K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2016

vì x^200 chia hết cho 4 , x^100 chia hết cho x^2 và 1 chia hết cho 1 nên x^200+x^100+1 chia hếtcho x^4+x^2+1

**** bn nhe  

4 tháng 9 2016

Đặt x2=ax2=a. Cần chứng minh: a^100+a^50⋮a2+a+1a100+a50⋮a2+a+1

Sử dụng tính chất quen thuộc: a3m+1+a3n+2=a(a3m−1)+a2(a3n−1)−(a2+a+1)⋮a2+a+1

27 tháng 6 2016

CÂU NÀY MÌNH LÀM ĐƯỢC RỒII

31 tháng 3 2016

ta có: x200+x100+1=x100*(x2+x+1)+1

x4+x2+1=x2*(x2+x+1)+1

mà x100*chia hết cho x2

x2+x+1chia hết cho x2+x+1

1chia hết cho 1

--->x100*(x2+x+1) chia hết cho x2*(x2+x+1)

--->x200+x100+1 chia hết cho x4+x2+1(điều phải chứng minh)

7 tháng 9 2017

Có gì đó sai sai mà sai thật!!

Ta có: \(\left(x^{200}+x^{100}+1\right)=\left(x^{100}+1\right)^2\)

\(\left(x^4+x^2+1\right)=\left(x^2+1\right)^2\)

\(1⋮1;x^{100}⋮x^2\forall x\)

\(\Rightarrow x^{100}+1⋮x^2+1\forall x\)

\(\Rightarrow Vớix\in Z,\left(x^{200}+x^{100}+1\right)⋮\left(x^4+x^2+1\right)\)

28 tháng 10 2016

https://vn.answers.yahoo.com/question/index?qid=20111212062832AACt3bZ

28 tháng 10 2016

Ta có : x6n-1=(x6-1).A=(x2-1)(x4+x2+1)A chia hết cho x4 + x+1

Khi đó : M=x200+x100+1=x200-x2+x100-x4+(x4+x2+1)= x2​​[(x6)33-1]-x4 [(x6)16-1]+(x4 + x+1)

Vì x2​​[(x6)33-1]chia hết cho x4 + x+1

x4 [(x6)16-1]chia hết cho x4 + x+1

Nên .....

3 tháng 11 2016

làm thế thì hơi rối