|1+x|+|x|=4x-2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu \(x<0\) thì khi \(x=-0,0000000000......1\), biểu thức có giá trị gần âm vô cùng (không tồn tại GTNN)
Giải bài toàn với x > 0:
\(A=\left(x^2+\frac{1}{8x}+\frac{1}{8x}\right)+3\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}\)
\(=x^2+\frac{1}{8x}+\frac{1}{8x}+3\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
\(\ge3\sqrt[3]{x^2.\frac{1}{8x}.\frac{1}{8x}}+0-\frac{3}{4}=0\)
Dấu bằng xảy ra khi \(\left(x^2=\$\frac{1}{8x}\text{ và }x-\frac{1}{2}=0\right)\Leftrightarrow x=\frac{1}{2}.\)
+Cách 2: ta có: \(4x^2-3x+\frac{1}{4x}=\frac{16x^3-12x^2+1}{4x}=\frac{\left(2x-1\right)^2\left(4x+1\right)}{4x}\ge0\forall x>0\)
a) => (4x-15).(4x-15)2015=(4x-15)2015
=> 4x-15=1
=> x=4
b) => 4.2x+6-480= 0
=> 4.2x-474=0
=> 4.2x=474
=> 2x= 118,5
ko có gt x thoả mãn đề bài
chả biết câu b trình bày đúng hay sai, hay là đầu bài chép nhầm nữa. Nếu sai ai đó chữa lại hộ cái nhé
_HẾT_
b, 2x+2x+1+2x+2+2x+3-480=0
2^x.1+2^x.2+2^x.2^2+2^x.2^3=480
2^x.(1+2+2^2+2^3)=480
2^x.15=480
2^x=32
2^x=2^5
x=5
\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2016}{2017}\)
\(=\frac{1\cdot2\cdot3\cdot4\cdot...\cdot2016}{2\cdot3\cdot4\cdot....\cdot2017}\)
\(=\frac{1}{2017}\)
Ta có:
\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.........\frac{2016}{2017}\)
\(=\frac{1.2.3......2016}{2.3.4......2017}\)
\(=\frac{1}{2017}\)
Vậy: \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.........\frac{2016}{2017}\)\(=\frac{1}{2017}\)
Áp dụng bđt cô si với 2 số dương 4x và 1/4x ta có: 4x+1/4x ≥ 2(1)
Đặt (4√x +3)/ (x+1) =B ; √x =t => x=t^2
ta có : B(t^2 +1) = 4t+3
<=>Bt^2 -4t+B-3=0
Xét delta =b^2 -4ac = 16-4B(B-3)= -4B^2 +12B+16 ≥ 0(*) (Để phương trình có gtnn thì pt phải có nghiệm nên delta ≥ 0)
Từ (*) => B^2 -3B-4 ≤ 0
<=> (B-4)(B+1) ≤ 0
=> -1 ≤ B ≤ 4
=>-B ≥ -4(2)
TỪ (1) và (2) => A ≥ 2+(-4)+2016=2014
Dấu = xảy ra <=> 4x=1/4x và B=4 (tự giải tìm x , ta sẽ được x = 1/4)
Xét \(B=\frac{x+1}{4\sqrt{x}+3}\Leftrightarrow16B=\frac{16x+16}{4\sqrt{x}+3}.\)\(=\frac{\left(4\sqrt{x}+3\right)\left(4\sqrt{x}-3\right)+25}{4\sqrt{x}+3}\)
\(=4\sqrt{x}-3+\frac{25}{4\sqrt{x}+3}=4\sqrt{x}+3+\frac{25}{4\sqrt{x}+3}-6\)
Áp dụng BĐT Cauchy
\(16B\ge2\sqrt{25}-6=4\Leftrightarrow B\ge\frac{1}{4}\)
\(\Rightarrow-\frac{4\sqrt{x}+3}{x+1}\ge-4\)
Áp dụng bđt Cauchy
\(\Rightarrow A\ge2\sqrt{\frac{4x.1}{4x}}-4+2016=2014\)
Vậy Min A=2014 khi x=1/4
=>|x-1|+|x-2|=2016
TH1: x<1
Pt sẽ là 1-x+2-x=2016
=>-2x+3=2016
=>-2x=2013
=>x=-2013/2(nhận)
TH2: 1<=x<2
Pt sẽ là x-1+2-x=2016
=>1=2016(loại)
TH3: x>=2
Pt sẽ là 2x-3=2016
=>2x=2019
=>x=2019/2(nhận)
Lời giải:
a.
PT $\Leftrightarrow (x+3)^2=2016^{2020}-17^{91}+9$
Ta thấy: $2016^{2020}-17^{91}+9\equiv 0-(-1)^{91}+0\equiv -1\equiv 2\pmod 3$
Mà 1 scp thì chia $3$ chỉ dư $0$ hoặc $1$ nên pt vô nghiệm.
b.
$x^2=2016(y-1)^2-2017^{2019}\equiv 0-1^{2019}\equiv 3\pmod 4$
Mà 1 scp chia $4$ chỉ dư $0$ hoặc $1$ nên vô lý.
Vậy pt vô nghiệm.
c.
$(x-1)^2=2017^{2017}+1\equiv 1^{2017}+1\equiv 2\pmod 4$
Mà 1 scp khi chia cho $4$ chỉ dư $0$ hoặc $1$ nên vô lý
Vậy pt vô nghiệm
d.
$(x+2)^2=2018^{10}+4\equiv (-1)^{10}+1\equiv 2\pmod 3$
Mà 1 scp khi chia $3$ dư $0$ hoặc $1$ nên vô lý
Vậy pt vô nghiệm.
a) (x+2)(x-3)=0
<=> x+2=0
x-3=0
<=> x=-2
x= 3
b) 2x-x2=0
<=> x(2-x) =0
<=> x=0
2-x=0
<=> x=0
x=2
a)(x+2)(x-3)=0
=>\(\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}}\)=>\(\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
Vậy x=-2 hoặc x=3
b) 2x-x2=0
=> x(2-x)=0
=>\(\orbr{\begin{cases}x=0\\2-x=0\end{cases}}\)=>\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy x=0 hoặc x=2
TH1 :x>0
=>\(\left|1+x\right|+\left|x\right|=4x-2016\)
\(2x+1=4x-2016\)
\(4x-2x=2016+1\)
\(2x=2017\)
\(x=\frac{2017}{2}\)
TH2:x<0
=>\(\left|1+x\right|+\left|x\right|=4x-2016\)
\(-1-x-x=4x-2016\)
\(-1-2x=4x-2016\)
\(4x+2x=-1+2016\)
\(6x=2015\)
\(x=\frac{2015}{6}\)