K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

Thay : a(n) = x

Ta có : (x - 1 + x +1)/ (x+x-2) = 2x / (2x-2) = 2x / 2(x-1) = x/(x-1)

Gọi UCLN(x ; x-1) = d

=> x chia hết cho d; (x-1) chia hết cho d

=> 1 chia hết cho d => d = 1

=> x/(x-1) là phân số tối giản => dpcm

2 tháng 8 2023

\(a_n=1+2+3+...+n=\dfrac{n\left(n+1\right)}{2}\)

\(\Rightarrow a_{n+1}=1+2+3+...+n+\left(n+1\right)=\dfrac{\left(n+1\right)\left(n+2\right)}{2}\)

\(\Rightarrow a_n+a_{n+1}=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n+1\right)\left(n+2\right)}{2}\)

\(=\dfrac{\left(n+1\right)}{2}.\left(n+n+2\right)=\dfrac{\left(n+1\right)}{2}.\left(2n+2\right)\)

\(=\dfrac{\left(n+1\right)}{2}.2\left(n+1\right)=\left(n+1\right)^2\)

\(\Rightarrow dpcm\)

2 tháng 8 2023

ko bt

24 tháng 4 2018

Ta có :

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_n}{a_{n+1}}=\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\)

\(\Rightarrow\)\(\frac{a_1^n}{a_2^n}=\frac{a_2^n}{a_3^n}=...=\frac{a_n^n}{a_{n+1}^n}=\frac{a_1^n+a_2^n+...+a_n^n}{a_2^n+a_3^n+...+a_{n+1}^n}=\frac{\left(a_1+a_2+...+a_n\right)^n}{\left(a_2+a_3+...+a_{n+1}\right)^n}=\frac{a_1.a_2...a_n}{a_2.a_3...a_{n+1}}=\frac{a_1}{a_{n+1}}\)

8 tháng 8 2017

Theo tính chất của dãy tỉ số bằng nha, ta có :

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=.....=\dfrac{a_n}{a_{n+1}}=\dfrac{a_1+a_2+....+a_n}{a_2+a_3+....+a_{n+1}}\)

\(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_1+a_2+....+a_n}{a_2+a_3+....+a_{n+1}}\)

\(\dfrac{a_2}{a_3}=\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\)

.................................

\(\dfrac{a_n}{a_{n+1}}=\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\)

\(\Rightarrow\left(\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\right)^n=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}........\dfrac{a_n}{a_{n+1}}\)

Vậy \(\left(\dfrac{a_1+a_2+......+a_n}{a_2+a_3+......+a_{n+1}}\right)=\dfrac{a_1}{a_{n+1}}\) (đpcm)

~ Học tốt ~

31 tháng 8 2020

Sửa : cho \(a_{1}, a_{2},..., a_{n}\in \mathbb{R}\)

31 tháng 8 2020

Ủa sao lệnh tex ko lên nhỉ ??

Sửa lại : \(a_1,a_2,....,a_n\inℝ\)