x^2+7+6x=0 help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)
\(\Leftrightarrow x-2=0\) (Vì: \(x^2+4x+6>0\) )
\(\Leftrightarrow x=2\)
b) \(2x^3+x^2-6x=0\)
\(\Leftrightarrow x\left(2x^2+x-6\right)=0\)
\(\Leftrightarrow x\left[\left(2x^2+4x\right)-\left(3x+6\right)\right]=0\)
\(\Leftrightarrow x\left[2x\left(x+2\right)-3\left(x+2\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+2=0\\2x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-2\\x=\frac{3}{2}\end{array}\right.\)
c) \(4x^2+4xy+x^2-2x+1+y^2=0\)
\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2=0\)
\(\Leftrightarrow\begin{cases}2x+y=0\\x-1=0\end{cases}\)\(\Leftrightarrow\begin{cases}y=-2\\x=1\end{cases}\)
Ai chẳng biết chuyển vế đổi dấu :v
a) \(x-7=4x+10\)
\(x-4x=10+7\)
\(-3x=17\)
\(x=\dfrac{17}{-3}\)
Vậy \(x=\dfrac{17}{-3}\)
b) \(2x+5=-3x+7\)
\(2x+3x=7-5\)
\(5x=2\)
\(x=\dfrac{2}{5}\)
Vậy \(x=\dfrac{2}{5}\)
c) \(x-\left(3x+7\right)=6x-1\)
\(x-3x-7=6x-1\)
\(-2x-7=6x+1\)
\(-7-1=6x+2x\)
\(-8=8x\)
\(x=\dfrac{-8}{8}=-1\)
Vậy \(x=-1\)
d) \(x+\left(5x-1\right)=15\)
\(x+5x-1=15\)
\(6x=15+1\)
\(6x=16\)
\(x=\dfrac{16}{6}=\dfrac{8}{3}\)
Vậy \(x=\dfrac{8}{3}\)
1 , x - 7 = 4x + 10
x - 4x = 10 + 7
- 3x = 17
x = 17 : ( - 3 )
x = \(\dfrac{-17}{3}\)
2 , 2x + 5 = -3x + 7
2x + 3x = 7 -5
5x = 2
x = 2 : 5
x =\(\dfrac{2}{5}\)
3 , x - ( 3x + 7 ) = 6x - 1
x - 3x - 7 = 6x - 1
x - 3x -6x = -1 +7
-8x = 6
x = 6 : ( -8 )
x = \(\dfrac{-3}{4}\)
4 , x + ( 5x -1 ) = 15
x + 5x - 1 = 15
x + 5x = 15 + 1
6x = 16
x = 16 : 6
x = \(\dfrac{8}{3}\)
5 , / x + 1 / = / 2x - 5 /
TH 1 : x + 1 = 2x - 5
x - 2x = -5 -1
- x = -4
= > x = 4
TH 2 : -x -1 = -2x + 5
-x + 2x = 5 + 1
x = 6
6 , / 3x + 8 / - / x -10 / = 0
3x + 8 - x + 10 = 0
3x - x = 0 - 10 - 8
2 x = -18
x = -18 : 2
x = - 9
a,\(x^3-x=0\Rightarrow x\left(x^2-1\right)=0\Rightarrow x\left(x+1\right)\left(x-1\right)=0\)
b,\(x^2-2x+x-2=0\Rightarrow x\left(x-2\right)+\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+1\right)=0\)
c,\(x^2-6x+8=x^2-4x-2x+8=x\left(x-4\right)-2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)
\(x^3-x=0\)
\(\Leftrightarrow x\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
x=0 hoặc x-1=0=> x=1 hoặc x+1=0 => x=-1
\(x^2-2x+x-2=0\)
\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
\(x^2-6x+8=0\)
\(\Leftrightarrow x^2-2x-4x+8=0\)
\(\Leftrightarrow x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)
x2 + 2x = 0
=> x(x + 2) = 0
=> \(\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
(x - 2) + 3.x2 - 6x = 0
=> (x - 2) + 3x2 - 3x . 2 = 0
=> (x - 2) + 3x.(x - 2) = 0
=> (1 + 3x)(x - 2) = 0
=> \(\orbr{\begin{cases}1+3x=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=2\end{cases}}\)
\(x^3-8x^3+27+7x^3-7x^2+7x-13=0\)
-7x\(^2\)+7x+14=0
-7x\(^2\)-7x+14x+14=0
-7x.(x+1)+14.(x+1)=0
(-7x+14).(x+1)=0
\(\left[{}\begin{matrix}-7x+14=0\Rightarrow-7x=-14\Rightarrow x=2\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)
\(3x^2+2y^2=7xy\)
\(\Leftrightarrow3x^2-7xy+2y^2=0\)
\(\Leftrightarrow3x^2-6xy-xy+2y^2=0\)
\(\Leftrightarrow3x\left(x-2y\right)-y\left(x-2y\right)=0\)
\(\Leftrightarrow\left(3x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-y=0\\x-2y=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3x=y\\x=2y\end{matrix}\right.\)
+) TH1 : \(y=3x\)
\(\Leftrightarrow A=\dfrac{3x+y}{7y-x}+\dfrac{6x-9y}{2x+y}\)
\(=\dfrac{3x+3x}{7.3x-x}+\dfrac{6x-9.3x}{2x+3x}\)
\(=\dfrac{9x}{20x}+\dfrac{-21x}{5x}\)
\(=-\dfrac{15}{4}\)
+) TH2 : \(x=2y\)
\(\Leftrightarrow A=\dfrac{3x+y}{7y-x}+\dfrac{6x-9y}{2x+y}\)
\(=\dfrac{3.2y+y}{7y-2y}+\dfrac{6.2y-9y}{2.2y+y}\)
\(=\dfrac{7y}{5y}+\dfrac{3y}{5y}\)
\(=2\)
Vậy...
\(x^2+6x+7=0\)
\(\text{∆}=6^2-4.7\)
\(=36-28=8\)
\(\Rightarrow\left[{}\begin{matrix}x_1=\dfrac{-6-\sqrt{8}}{2}=-3-\sqrt{2}\\x_2=\dfrac{-6+\sqrt{8}}{2}=-3+\sqrt{2}\end{matrix}\right.\)