Cho tam giác ABC có 3 góc nhon (AB<AC) .Các đường cao AD,BE,CF cắt nhau tại H a) C'm:tam giác AEB đồng dạng với tam giác AFC từ đó suy ra AF*AB=AE*AC
b)C'm góc AEF=góc ABC
c)kẻ DM vuông góc AB tại M. Qua M kẻ đường thẳng song song với EF cắt AC tại N C'm DN vuông AC
d)gọi I là trung điểm của HC .C'm tam giác AFC đồng dạng với tam giác FHB và FA*FB=FI^2-EI^2
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
Do đó: ΔAEB\(\sim\)ΔAFC
Suy ra: AE/AF=AB/AC
hay \(AE\cdot AC=AB\cdot AF\)
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc EAF chung
Do đó: ΔAEF\(\sim\)ΔABC
Suy ra: \(\widehat{AEF}=\widehat{ABC}\)