Chứng minh rằng với mọi \(n>0\)thì:
\(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho \(10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử n2 và n là số lẻ
Ta có n2 = n.n
Vì n lẻ nên n.n là số lẻ
=> n2 lẻ (trái giả thiết)
Vậy n2 lẻ thì n lẻ
bài còn lại làm tương tự
1/ Giả sử \(n^2\) là số lẻ nhưng n là một số chẵn.
Khi đó, n = 2k (k thuộc N*)
Ta có : \(n^2=\left(2k\right)^2=4k^2\) luôn là một số chẵn, vậy trái với giả thiết.
Vậy điều phản chứng sai. Ta có đpcm
2/ Tương tự.
3n+2 -2n+2 +3n -2n
=3n .32 -2n .22 +3n -22
=3n(9+)-2n(4-1)
Vì 3n .10 ⋮10
=> 3n .10- 2n .3⋮10
=>3n +2 -2n+2 +3n -2n ⋮10
sai
trước 2^n là dấu trừ => trong ngoặc đổi dấu thành 2^n(4+1)
=>2^n-1.10 chia hết cho 10
=>(3^n+2)+(3^n)-(2^n+2)-(2^n)=3^n((3^2)+1)-2^n((2^2)+1)=(3^n)*10-(2^n)*5=(3^n)*10-(2^n-1)*5*2=(3^n)*10-(2^n-1)*10=10*((3^n)-(2^n-1) chia hết cho 10
=>(3^n+2)-(2^n+2)+(3^n)-(2^n)chia hết cho 10
3n+2 - 2n+2 + 3n - 2n
= 3n.(32+1) - 2n(22+1)
= 3n.10 - 2n.5
Có: 3n.10 có tận cùng là 0
Vì 2n chẵn
=> 2n.5 có tận cùng là 0
=> 3n.10 - 2n.5 có tận cùng là 0 => chia hết cho 10
=> 3n+2-2n+2+3n-2n chia hết cho 10 (đpcm)