K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2021

D

2 tháng 7 2017

ABH^ = 45* và AHB^ = 90* => AHB là tam giác vuông cân 
=> AH = BH (1) 
ACH^ = 180* - A^ - B^ = 180* - 105* - 45* = 30* 
=> AH = AC/2 => AC = 2AH 
BC = CH + BH = 4 => CH = 4 - BH (2) 
(1) và (2) => CH = 4 - AH 
AC^2 = CH^2 + AH^2 
4AH^2 = (4 - AH)^2 + AH^2 
4AH^2 = 16 - 8AH^2 + AH^2 + AH^2 
<=> 2AH^2 + 8AH - 16 = 0 
<=> AH^2 + 4AH - 8 = 0 
=> AH = 2(√3 -1) 
=> AB^2 = 2AH^2 = 2.4(3 - 2√3 + 1) = 8(4 - 2√3) = 16(2 - √3) 
=> AB = 4√(2 - √3) 
AC = 2AH = 4(√3 -1)

2 tháng 7 2017

bạn nên nhớ 2 công thức sau: 

+ trong tam giác có góc A = 60độ thì ta có: BC² = AB² + AC² - AC.AB. 

+ trong tam giác có góc A = 120độ thì ta có: BC² = AB² + AC² + AC.AB. 

Giải: Kẻ đường cao BH của ∆ABC. xét tam giác ABH vuông tại H, có góc BAH = 60độ => góc ABH = 30độ => AB = 2.AH (bổ đề: trong tam giác vuông có góc = 30độ, thì cạnh đối diện với góc 30độ = nửa cạnh huyền - c/m không khó).. 

Xét ∆BHC vuông tại H => BC² = BH² + HC² = BH² + (AC - AH)² 

= BH² + AH² + AC² - 2.AH.AC 

= (BH² + AH²) + AC² - AB.AC (vì AB = 2AH) 

= AB² + AC² - AB.AC => ta đã c/m đc. công thức 1. Thay AB = 28cm và AC = 35cm vào ta tính được BC = √1029 (cm) ≈ 32,08 (cm) 

Công thức 2 thì cách chứng minh cũng khá giống, cũng kẻ đường cao từ B. Tự chứng minh nha bạn ^^

2 tháng 7 2017

ko biết

:))

k

25 tháng 3 2019

a,Có:\(\Delta ABC\)vuông tại A (gt)

\(\Rightarrow AB^2+AC^2=BC^2\)(Định lí Py-ta-go)

Mà AB=2cm;BC=4cm(gt)

Suy ra:\(2^2+AC^2=4^2\)

\(AC^2=8-4\)

\(AC^2=4\)

\(AC=\sqrt{4}\)

AC=2

Vậy ...

b,

25 tháng 3 2019

Hình như phần b sai đề bài (bài 1)

6 tháng 3 2022

Áp dụng định lý Pi-ta-go vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\\ \Rightarrow BC=\sqrt{3^2+4^2}\\ \Rightarrow BC=5\left(cm\right)\)

Ta có: \(S_{ABC}=\dfrac{AB.AC}{2}\)

Ta lại có: \(S_{ABC}=\dfrac{AH.BC}{2}\)

\(\Rightarrow\dfrac{AB.AC}{2}=\dfrac{AH.BC}{2}\\ \Rightarrow AB.AC=AH.BC\\ \Rightarrow3.4=5.AH\\ \Rightarrow AH=\dfrac{12}{5}\left(cm\right)\)

6 tháng 3 2022

\(AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=\dfrac{12}{5}cm\) 

e tự trình bày ra

BC=căn 3^2+4^2=5cm

AB/BC=3/5

AC/BC=4/5

AB/AC=3/4

AC/AB=4/3