Cho tam giác ABC trên cạnh BC lấy D,E sao cho BD=CE(BD<BE). Gọi G là trọng tâm tam giác ABC. CM G cũng là trọng tâm tam giác ADE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VẼ DF VUÔNG GÓC VỚI AB, EG VUÔNG GÓC VỚI AC
BD = CE => SABC = SACE => AB.DF = AC.EG => DF/EG = AC/AB (1)
TAM GIÁC ADF ĐỒNG DẠNG VỚI TAM GIÁC AEG => DF/EG = AD/AE (2)
TỪ (1) VÀ (2) => AC/AB = AD/AE, CHO TA TAM GIÁC ABE ĐỒNG DẠNG VỚI TAM GIÁC ACD
=> GÓC ABE = GÓC ACD => TAM GIÁC ABC CÂN (đpcm)
tự vẽ hình
Xét \(\Delta\)ABD và \(\Delta\)ACE có :
AB = AC ( gt )
\(\widehat{ABC}=\widehat{ACB}\) ( \(\Delta ABC\) cân tại A )
BD = CE ( gt )
\(\Rightarrow\) \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)
\(\Rightarrow AD=AE\) ( 2 cạnh tương ứng )
\(\Rightarrow\) \(\Rightarrow\Delta ADE\) cân tại A ( đpcm )
Ta có: \(AB=AC.BD=CE\) ⇒ \(AD=AE\)
⇒ △ ADE cân tại A
⇒ \(\widehat{ADE}=\dfrac{180-A}{2}\) \(\left(1\right)\)
Ta có: △ ABC cân tại A
⇒ \(\widehat{B}=\dfrac{180-A}{2}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(\widehat{B}=\widehat{D}\)
Mà ta thấy 2 góc này ở vị trí đồng vị nên suy ra DE // BC
Xét ΔABC có
\(\dfrac{BD}{AB}=\dfrac{CE}{AC}\)
nên DE//BC
Góc " M , N " ở đâu ra đấy ạ?-
Đọc mãi vẫn chx xác nhận được " M , N " ở đâu ra=))-