cho hình chữ nhật ABCD có AB=4cm AD=3cm. gọi H là chân đường vuông kẻ từ A đến cạnh BD.
a, chứng minh rằng tam giác ABD đồng dạng với tam giác HAD.
b, tính độ dài đoạn thẳng BD, HD.
c, đường thẳng AH cắt DC tại I và cắt đường thẳng BC tại K. tính tỉ số diện tích của hai tam giác ABH và BKHv
a: Xét ΔABD vuông tại A và ΔHAD vuông tại H có
góc ADH chung
Do đó: ΔABD\(\sim\)ΔHAD
b: \(BD=\sqrt{3^2+4^2}=5\left(cm\right)\)
\(HD=\dfrac{AD^2}{BD}=1.8\left(cm\right)\)