cho tam giác ABC, đường BE cắt CF tại H, đường thẳng qua B song song CF và đường qua C song song BE cắt nhau tại D. C/m: tam giác ABE đồng dạng tam giác ACF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔABE∼ΔACF(g-g)
a) Xét \(\Delta ABE\) và \(\Delta ACF\) có:
\(\widehat{AEB}=\widehat{AFC}\)
\(\widehat{A}\) chung
\(\Rightarrow\Delta ABE\sim\Delta ACF\left(gn\right)\)
b) Vì \(\Delta ABE\sim\Delta ACF\)
\(\Rightarrow\widehat{ABE}=\widehat{ACF}\left(1\right)\)
Theo bài ra, ta có: AB // d
\(\Rightarrow\widehat{ABE}=\widehat{BED}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\widehat{ACF}=\widehat{BED}\)
Xét \(\Delta HED\) và \(\Delta HEC\) có:
\(\widehat{BED}=\widehat{ACF}\)
\(\widehat{EHC}\) chung
\(\Rightarrow\Delta HED\sim\Delta HEC\left(g-g\right)\)
\(\Rightarrow\dfrac{HE}{HD}=\dfrac{HC}{HE}\)
\(\Leftrightarrow HE^2=HD.HC\)