K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 4 2022

1. Đề lỗi

2.

Đường tròn (C) tâm \(I\left(1;-1\right)\) bán kính \(R=\sqrt{1^2+\left(-1\right)^2-\left(-7\right)}=3\)

a.

\(d\left(I;D\right)=\dfrac{\left|1-1-4\right|}{\sqrt{1^2+1^2}}=2\sqrt{2}< R\)

\(\Rightarrow D\) cắt (C) tại 2 điểm phân biệt

b.

Gọi H là trung điểm MN \(\Rightarrow IH\perp MN\Rightarrow IH=d\left(I;D\right)=2\sqrt{2}\)

ÁP dụng định lý Pitago trong tam giác vuông IHM:

\(HM=\sqrt{IM^2-IH^2}=\sqrt{R^2-IH^2}=\sqrt{9-8}=1\)

\(\Rightarrow MN=2MH=2\)

\(S_{IMN}=\dfrac{1}{2}IH.MN=2\sqrt{2}\)

NV
8 tháng 4 2022

3.

Đường tròn (C) tâm \(I\left(2;3\right)\) bán kính \(R=\sqrt{2}\)

Đường còn (C') tâm \(I'\left(1;2\right)\) bán kính \(R'=2\sqrt{2}\)

Gọi tiếp tuyến chung của (C) và (C') là (d) có pt: \(ax+by+c=0\) với \(a^2+b^2\ne0\)

\(\Rightarrow\left\{{}\begin{matrix}d\left(I;\left(d\right)\right)=R\\d\left(I';\left(d\right)\right)=R'\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{\left|2a+3b+c\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\left(1\right)\\\dfrac{\left|a+2b+c\right|}{\sqrt{a^2+b^2}}=2\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow\left|a+2b+c\right|=2\left|2a+3b+c\right|\)

\(\Rightarrow\left[{}\begin{matrix}4a+6b+2c=a+2b+c\\4a+6b+2c=-a-2b-c\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3a+4b+c=0\\5a+8b+3c=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}c=-3a-4b\\c=-\dfrac{5a+8b}{3}\end{matrix}\right.\)

Thế vào (1):

\(\Rightarrow\left[{}\begin{matrix}\dfrac{\left|2a+3b-3a-4b\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\\\dfrac{\left|2a+3b-\dfrac{5a+8b}{3}\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left|a+b\right|=\sqrt{2\left(a^2+b^2\right)}\\\left|a+b\right|=3\sqrt{2\left(a^2+b^2\right)}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a^2+2ab+b^2=2a^2+2b^2\\a^2+2ab+b^2=18a^2+18b^2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left(a-b\right)^2=0\\17a^2-2ab+17b^2=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow a=b\) \(\Rightarrow c=-3a-4b=-7a\)

Thế vào pt (d):

\(ax+ay-7a=0\Leftrightarrow x+y-7=0\)