Chứng tỏ rằng trong 3 số nguyên liên tiếp tồn tại duy nhất một số chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu cần mk làm câu 2 trc :
2)
a.
Gọi số tự nhiên đầu tiên là a
=> 2 số tiếp theo là a+1 và a+2
=> Tổng của chúng là :
a + a + 1 + a + 2
= 3a + 3
= 3 ( a + 2 ) chia hết cho 3 ( đpcm )
b.
Gọi số tự nhiên đầu tiên là a
=> 3 số tiếp theo là a+1; a+2 và a+3
=> tổng của chúng là :
a + a + 1 + a + 2 + a + 3
= 4a + 6
ta có 4a chia hết cho 4 mà 6 ko chia hết cho 4
=> ko chia hết
1)
a.
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
+) Nếu a chia hết cho 3 => đpcm
+) Nếu a ko chia hết cho 3 : ( có 2 trường hợp )
TH1 : a = 3k + 1
=> a + 2 = 3k + 1 + 2
=> a + 2 = 3k + 3
=> a + 2 = 3 ( k + 1 ) chia hết cho 3
=> a + 2 chia hết cho 3 ( đpcm )
TH2 : a = 3k + 2
=> a + 1 = 3k + 2 + 1
=> a + 1 = 3k + 3
=> a + 1 = 3 ( k + 1 ) chia hết cho 3
=> a + 1 chia hết cho 3 ( đpcm )
a ) Gọi 2 số nguyên liên tiếp lần lượt là a và a + 1
* Nếu a là số chẵn => a chia hết cho 2
* Nếu a là số lẻ => a + 1 là số chẵn => a + 1 chia hết cho 2
Vậy trong 2 số nguyên liên tiếp có 1 số chia hết cho 2 .
b ) Gọi 3 số nguyên liên tiếp lần lượt là a , a + 1 và a + 2
* Nếu a chia hết cho 3 thì bài toán luôn đúng
* Nếu a chia 3 dư 1 thì a = 3k +1
=> a + 2 = 3k + 1 + 2 = 3k + 3
=> a + 2 chia hết cho 3
* Nếu a chia 3 dư 2 thì a = 3k + 2
=> a + 1 = 3k + 2 + 1 = 3k + 3
=> a + 1 chia hết cho 3
Vậy trong 3 số nguyên liên tiếp có 1 số chia hết cho 3 .
1/Trong ba số nguyên liên tiếp có một số chia hết cho 3
Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3 .
2/Trong bốn số nguyên liên tiếp có một số chia hết cho 4
Bốn số tự nhiên liên tiếp khi chia cho 4 sẽ được 4 số dư khác nhau.
Tức là ngoài số dư là 1, 2, 3 phải có một phần dư là 0
Kết luận: luôn tồn tại 1 số chia hết cho 4.
.
Có thể suy luận bằng cách giả sử:
n, (n+1), (n+2), (n+3)
1.Nếu n chia hết cho 4 => ĐPCM
2. nếu n chia 4 dư 1 => (n+3) sẽ chia hết cho 4
3. nếu n chia 4 dư 2 => (n+2) sẽ chia hết cho 4
4. nếu n chia 4 dư 3 => (n+1) sẽ chia hết cho 4
Nhận xét: 4p - 1; 4p; 4p + 1 là 3 số tự nhiên liên tiếp Nên có 1 số trong 3 số đó chia hết cho 3
Vì p là số nguyên tố > 3; 4 không chia hết cho 3 nên 4p không chia hết cho 3
=> 4p - 1 hoặc 4p + 1 chia hết cho 3
=> ít nhất trong hai số 4p - 1 ; 4p + 1 là hợp số.
giải
Vì p là số nguyên tố > 3; 4 không chia hết cho 3 nên 4p không chia hết cho 3
=> 4p - 1 hoặc 4p + 1 chia hết cho 3
Vậy ít nhất trong hai số 4p - 1 ; 4p + 1 là hợp số.
hok tốt
a) Chứng minh ba số tự nhiên liên tiếp chia hết cho 3
Gọi ba số tự nhiên liên tiếp đó là: \(n;\)\(n+1;\)\(n+2\)
Suy ra tích ba số đó là: \(n.\left(n+1\right).\left(n+2\right)\)
+ Với \(n:3\)dư \(1\)\(\Rightarrow\)\(n=3k+1\)\(\left(k>0\right)\)
Thay \(n=3k+1\)vào \(n+2\)ta có: \(n+2=3k+1+2=3k+3⋮3\)
+ Với \(n:3\)dư \(2\)\(\Rightarrow\)\(n=3k+2\)\(\left(k>0\right)\)
Thay \(n=3k+1\)vào \(n+1\)ta có: \(n+1=3k+1+2=3k+3⋮3\)
Vậy ba số tự nhiên liên tiếp luôn chia hết cho 3
b) Chứng minh bốn số tự nhiên liên tiếp chia hết cho 4
Gọi ba số tự nhiên liên tiếp đó là: \(n;\)\(n+1;\)\(n+2;\)\(n+3\)
Suy ra tích ba số đó là: \(n.\left(n+1\right).\left(n+2\right).\left(n+4\right)\)
+ Với \(n:4\)dư \(1\)\(\Rightarrow\)\(n=4k+1\)\(\left(k>0\right)\)
Thay \(n=4k+1\)vào \(n+3\)ta có: \(n+3=4k+1+3=4k+4⋮4\)
+ Với \(n:4\)dư \(2\)\(\Rightarrow\)\(n=4k+2\)\(\left(k>0\right)\)
Thay \(n=4k+2\)vào \(n+2\)ta có: \(n+2=4k+2+2=4k+4⋮4\)
+ Với \(n:4\)dư \(3\)\(\Rightarrow\)\(n=4k+3\)\(\left(k>0\right)\)
Thay \(n=4k+3\)vào \(n+1\)ta có: \(n+1=4k+1+3=4k+4⋮4\)
Vậy bốn số tự nhiên liên tiếp luôn chia hết cho 4
\(a)\) Gọi ba số tự nhiên liên tiếp là \(a,a+1,a+2\)
Nếu \(a⋮3\) thì bài toán được chứng minh
Nếu \(a⋮3̸\) thì \(a=3k+1\) hoặc \(a=3k+2\left(k\in N\right)\)
Nếu \(a=3k+1\) thì \(a+2=3k+1+2=3k+3⋮3\)
(vì \(3k⋮3\)và \(3⋮3\) nên\(3k+3⋮3\))
Nếu \(a=3k+2\) thì \(a+1=3k+2+1=3k+3⋮3\)
(vì \(3k⋮3\) và \(3⋮3\) nên \(3k+3⋮3\))
Vậy trong ba số tự nhiên liên tiếp, có \(1\) số chia hết cho \(3\)
vào đây tham khảo nha: Câu hỏi của Hoàng Như Anh - Toán lớp 7 - Học toán với OnlineMath
ok mk nhé!!!! 56546676576658545556576576765456578779879876456346245757657656587
Gọi k,k+1,k+2 lần lượt là 3 số tự nhiên liên tiếp
Ta có:
k+(k+1)+(k+2)
=3k+3
Vì 3k chia hết cho 3
=> tron 3 số nguyên liên tiếp luôn có 1 só chia hết cho3
tíc mình nha