cho góc bẹt AOB, trên cùng 1 nửa mặt phẳng bờ AB. Vẽ OD và OC sao cho góc AOC =60 độ. Góc BOD = 1/2 góc AOC. Chứng tỏ rằng 2 tia OC và OD vuông góc.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chú ý: Kí hiệu * là độ
Ta có: góc AOC + góc COD + góc DOB = góc AOB
góc AOC + góc COD + góc DOB = 180* (vì góc bẹt)
40* + góc COD + 50* = 180*
góc COD = 180* - (40* + 50*)
góc COD = 180* - 90*
Vậy góc COD = 90*
Vì góc COD = 90* (cmt) nên OC vuông góc với OD.
Cách 1:
Ta có:
^AOC + ^COD = ^AOD
=> 120° + ^COD = 150°
=> ^COD = 150° - 120°
=> ^COD = 30°
Cách 2:
Vì ^AOB là góc bẹt
=> ^AOB = 180°
Ta có:
^AOD + ^DOB = 180°
=> 150° + ^DOB = 180°
=> ^DOB = 180° - 150°
=> ^DOB = 30°
Lại có:
^COB = 180° - 120° = 60°
=> ^DOB = 60° - 30° = 30°
a) Trên nửa mặt phẳng bờ chứa tia AB có: A O C ^ và B O C ^ là 2 góc kề bù mà A O C ^ = 50 0 . Ta có A O C ^ + B O C ^ = A O B ^ ⇒ B O C ^ = 180 0 − A O C ^
⇒
B
O
C
^
=
130
0
b) Trên nửa mặt phẳng bờ chứa tia AB, ta có OD là tia nằm giữa OB và OC nên
Trên cùng một nửa mặt phẳng bờ chứa tia AB, ta có B O D ^ < B O C ^ 40 0 < 130 0 nên tia OD là tia nằm giừa hai tia OB và OC. Suy ra
C O D ^ + D O B ^ = C O B ^ ⇒ C O D ^ = 130 0 − B O D ^ ⇒ C O D ^ = 130 0 − 40 0 ⇒ C O D ^ = 90 0
Vậy O D ⊥ O C