phân tích các đa thức sau thành nhân tử
a, 8xy2 - 2x2y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ x2 + 4x - 21= x2 - 3x +4x - 21
= (x2+4x)-(3x+21)
= x(x+4)- 3(x+7)
= (x-3).(x+7)
b/ 3x2-6xy+3y2-3z2 = 3(x2- 2xy+y2- z2)
= 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2]
= 3(x + y – z)(x + y + z)
c/ 2x2y + 12xy + 18y = 2y(x2+6x+9)
a, 2xy^2 ( x^3 -3xy - 4 )
b, x^2 - 4x - 4x +16
= x(x-4) - 4(x-4)
= (x-4) (x-4)
`a)x^4+2x^2y+y^2`
`=(x^2+y)^2`
`b)(2a+b)^2-(2b+a)^2`
`=(2a+b-2b-a)(2a+b+2b+a)`
`=(a-b)(3a+3b)`
`=3(a-b)(a+b)`
`c)8a^3-27b^3-2a(4a^2-9b^2)`
`=(2a-3b)(4a^2+6ab+9b^2)-2a(2a-3b)(2a+3b)`
`=(2a-3b)(4a^2+6ab+9b^2-3a^2-6ab)`
`=9b^2(2a-3b)`
a) Ta có: \(x^4+2x^2y+y^2\)
\(=\left(x^2\right)^2+2\cdot x^2\cdot y+y^2\)
\(=\left(x^2+y\right)^2\)
b) Ta có: \(\left(2a+b\right)^2-\left(2b+a\right)^2\)
\(=\left(2a+b-2b-a\right)\left(2a+b+2b+a\right)\)
\(=\left(a-b\right)\left(3a+3b\right)\)
\(=3\left(a+b\right)\left(a-b\right)\)
Bài 1:
\(a,2x^2y\left(2x^2y^2-xy^2\right)\\ =2x^2x^2y^2y-2x^2x.y^2.y=2x^4y^3-2x^3y^3\\ b,\left(x-1\right)\left(2x+3\right)\\ =x.2x+x.3-1.2x-1.3=2x^2+3x-2x-3\\ =2x^2+x-3\\ c,\left(20x^3y^4+10x^2y^3-5xy\right):5xy\\ =20x^3y^4:5xy+10x^2y^3:5xy-5xy:5xy\\ =\left(20:5\right).\left(x^3:x\right).\left(y^4:y\right)+\left(10:5\right).\left(x^2:x\right).\left(y^3:y\right)-\left(5:5\right).\left(x:x\right).\left(y:y\right)\\ =4x^2y^3+2xy^2-1\\ d,\left(y-3x\right)^2-\left(y^2-6xy\right)\\ =\left[y^2-2.y.3x+\left(3x\right)^2\right]-\left(y^2-6xy\right)\\ =y^2-6xy+9x^2-y^2+6xy =9x^2\)
Bài 2:
\(a,4xy+4xz=4x\left(y+z\right)\\ b,x^2-y^2+9-6x\\ =\left(x^2-6x+9\right)-y^2\\ =\left(x-3\right)^2-y^2\\ =\left(x-3-y\right)\left(x-3+y\right)\)
Bài 3:
\(a,\dfrac{3xy}{y+z}+\dfrac{3xz}{y+z}\\=\dfrac{3xy+3xz}{y+z}\\ =\dfrac{3x\left(y+z\right)}{\left(y+z\right)}=3x\left(Với:y\ne-z\right)\\ b,\dfrac{x}{x+2}-\dfrac{x}{x-2}\\ =\dfrac{x\left(x-2\right)-x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}\\ =\dfrac{x^2-2x-x^2-2x}{\left(x+2\right)\left(x-2\right)}=0\)
\(a,=5\left(a-4b\right)\\ b,=\left(y+1\right)^2-x^2=\left(y+1-x\right)\left(x+y+1\right)\)
a) \(9x^2-16\)
\(=\left(3x\right)^2-4^2\)
\(=\left(3x-4\right)\left(3x+4\right)\)
b) \(x^2+4xy+4y^2-3x-6y\)
\(=\left(x^2+4xy+4y^2\right)-\left(3x+6y\right)\)
\(=\left[x^2+2\cdot x\cdot2y+\left(2y\right)^2\right]-3\left(x+2y\right)\)
\(=\left(x+2y\right)^2-3\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x+2y-3\right)\)
#\(Toru\)