Cho tam giác ABC 3 góc nhọn.AB=c,AC=b.BC=a.Cm: a/sinA =b/sinB =c/sinC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình
Kẻ BH \(\perp\)AC và \(CK\perp\)AB
Tam giác AKC vuông tại K
=>CK=bsinA (1)
Tam giác BKC vuông tại K
=>CK=asinB (2)
Từ (1) (2)=>bsinA=asinB
<=>\(\frac{a}{sinA}=\frac{b}{sinB}\)
Chứng minh tương tự ta có :\(\frac{a}{sinA}=\frac{c}{sinC}\)
Vậy ....
Kẻ AH vuông góc BC
Xét ΔAHB vuông tại H có sin B=AH/AB
=>AH=c*sin B
Xét ΔAHC vuông tại H có sin C=AH/AC
=>AH=AC*sin C=b*sin C
=>c*sin B=b*sin C
=>c/sinC=b/sinB
Kẻ BK vuông góc AC
Xét ΔABK vuông tại K có
sin A=BK/AB
=>BK=c*sinA
Xét ΔBKC vuông tại K có
sin C=BK/BC
=>BK/a=sin C
=>BK=a*sin C
=>c*sin A=a*sin C
=>c/sin C=a/sin A
=>a/sin A=b/sinB=c/sinC
ta có
sinA + sinB – sinC = 4sin (A/2) sin(B/2) cos(C/2) (2)
suy ra điều phải chứng minh.
Ta có : \(S_{ABC}=\dfrac{1}{2}bc.sinA=\dfrac{1}{2}acSinB=\dfrac{1}{2}abSinC\)
\(\Rightarrow bc.sinA=acSinB=abSinC\)
- Lấy abc chia cho cả 3 vế ta được ĐPCM
Kẻ AH⊥BC
Xét ΔABH vuông tại H có \(AH=c\cdot\sin\widehat{B}\)
Xét ΔACH vuông tại H có \(AH=b\cdot\sin\widehat{C}\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=\dfrac{AH}{\sin\widehat{B}}\\b=\dfrac{AH}{\sin\widehat{C}}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sin\widehat{B}=\dfrac{AH}{c}\\\sin\widehat{C}=\dfrac{AH}{b}\end{matrix}\right.\Leftrightarrow\dfrac{c}{\sin\widehat{C}}=\dfrac{b}{\sin\widehat{B}}\)(1)
Kẻ BK⊥AC
Cm tương tự, ta được: \(\dfrac{a}{\sin\widehat{A}}=\dfrac{c}{\sin\widehat{C}}\)(2)
Từ (1), (2) suy ra đpcm
Lời giải:
a) Theo định lý sin và áp dụng tính chất dãy tỉ số bằng nhau ta có:
asinA=bsinB=csinC=b+csinB+sinC=2asinB+sinCasinA=bsinB=csinC=b+csinB+sinC=2asinB+sinC
⇒1sinA=2sinB+sinC⇒1sinA=2sinB+sinC
⇒2sinA=sinB+sinC⇒2sinA=sinB+sinC (đpcm)
b) Theo định lý sin ta có:
asinA=bsinB=csinCasinA=bsinB=csinC
⇒(asinA)2=bsinB.csinC=a2sinB.sinC⇒(asinA)2=bsinB.csinC=a2sinB.sinC
⇒sin2A=sinB.sinC⇒sin2A=sinB.sinC (đpcm)
Kẻ đường cao : BH , AI , CK
Ta có: sinA = BH / c ; sinB = AI / c
=> sinA/sinB = BH / AI (1)
Mà BH = a.sinC ; AI = b.sinC
=> BH/AI = a/b (2)
Từ (1) và (2) suy ra sinA/sinB = a/b => a/sinA = b/sinB
Bạn chỉ việc nói chứng minh tượng tự , ta có:
b/sinB = c/sinC ; c/sinC = a/sinA
Từ đó suy ra a /sinA = b / sinB = c /sinC
Chúc bạn học tốt
Tự vẽ hình
Kẻ BH \(\perp\)AC và \(CK\perp\)AB
Tam giác AKC vuông tại K
=>CK=bsinA (1)
Tam giác BKC vuông tại K
=>CK=asinB (2)
Từ (1) (2)=>bsinA=asinB
<=>\(\frac{a}{sinA}=\frac{b}{sinB}\)
Chứng minh tương tự ta có :\(\frac{a}{sinA}=\frac{c}{sinC}\)
Vậy ....