Cho tứ giác ABCD.Kẻ đường chéo BD từ C vẽ 1 đường thẳng song song BD.Cắt AD kéo dài ở E.Nối B với E.So sánh dt ABE và ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo định lý Ta-lét:
Ta có: AE // BC nên O E O B = O A O C (1) hay A đúng.
BG // AD nên O B O D = O G O A (2) hay C đúng
Từ (1) và (2) suy ra: O E O B . O B O D = O A O C . O G O A hay O E O D = O G O C , do đó EG // CD (định lí Talet đảo) hay D đúng
Vậy B sai
Đáp án: B
a.
Theo định lý Thales,ta có:
\(OE//BC\) nên \(\frac{AE}{EB}=\frac{AO}{OC}\left(1\right)\)
\(OF//CD\) nên \(\frac{AF}{FD}=\frac{AO}{OC}\left(2\right)\)
Từ (1);(2) suy ra \(\frac{AE}{EB}=\frac{AF}{FD}\Rightarrow FE//BD\) theo ĐL Thales đảo.
b.
Theo định lý Thales,ta có:
\(OG//AB\) nên \(\frac{AO}{OC}=\frac{BG}{GC}\left(3\right)\)
\(OH//AD\) nên \(\frac{AO}{OC}=\frac{DH}{HC}\left(4\right)\)
Từ (3);(4) suy ra:\(\frac{BG}{GC}=\frac{DH}{HC}\Rightarrow BG\cdot CH=CG\cdot DH\left(đpcm\right)\)