Tìm số tự nhiên có 3 chữ số có tổng các chữ số bằng 10.Chữ số hàng trăm lớn hơn chữ số chục.Chữ số hàng chục lớn hơn chữ số hàng đơn vị
Các bạn có thể giải đầy đủ các bước làm thật đầy đủ được không
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tự nhiên đó có dạng \(\overline{abc}\left(1\le a\le9;0\le b,c\le9;a,b,c\in\mathbb{N}\right)\)
Theo đề bài ta có: \(a+b+c=21;c>b;\overline{cba}-\overline{abc}=198\left(1\right)\)
Hay \(\left\{{}\begin{matrix}a+b+c=21\\99\left(c-a\right)=198\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+c=21\\c-a=2\end{matrix}\right.\Rightarrow\left(c-2\right)+b+c=21\)
\(\Leftrightarrow2c+b=23.\) Mà ta có: \(23=2c+b< 3c\Rightarrow c>\dfrac{23}{3}\Rightarrow9\ge c\ge8\) (do $c\in \N$)
Với $c=9$ thì $b=5$ suy ra $a=7.$ Vậy số đó là $759.$
Với $c=8$ thì $b=7$ suy ra $a=6.$ Vậy số đó là $678$
Lâu không giải toán $6$ nên mình không chắc về cách trình bày đâu bạn nhé.
Gọi số cần tìm là a b c với 0 ≤ c < b < a ≤ 9, a + b+ c = 10
Nhận thấy a + b + c = 9 + 1 + 0 = 8+ 2 + 0 = 7 + 3 + 0 = 6 + 4 + 0 = 7 + 2 + 1 = 6 + 3 + 1 = 5 + 4 + 1 = 5 + 3 + 2
Vậy có 8 số thỏa mãn điều kiện bài toán là : 910, 820, 730, 640, 721, 631, 541, 532
1001 phải là 2 số tự nhiên tiên tiếp
Nên \(\orbr{\begin{cases}n+1=1000\\n+1=1002\end{cases}\Rightarrow\orbr{\begin{cases}n=999\\x=1001\end{cases}}}\)
Thay n=999 ta có:
1+2+3+.....+999=\(\frac{\left(999+1\right)999}{2}=499500\)(loại)
Thay n=1001 ta có:
\(1+2+3+...+1001=\frac{\left(1001+1\right)1001}{2}=501501\)(chọn)
Vậy tổng cần tìm là: 501501
ta gọi số cần tìm là abcd (có gạch trên đầu abcd)
theo đề ra ta có n2 = abcd (có gạch trên đầu abcd)
và ⎧⎩⎨⎪⎪a=d−2b=d−3c=d−1{a=d−2b=d−3c=d−1
vì n2 có tận cùng ∈ {0;1;4;5;6;9} ⇒ d ∈{0;1;4;5;6;9}
mà a ≥ 1 => d ≥ 3 ⇒ d ∈ {4;5;6;9}
=> abcd ( có gạch trên đầu ) ∈ {2134;3245;4356;7689}
thử lại ta thấy chỉ có 4356 = 662 là thỏa mãn
vậy số cần tìm là 4356
3 số đó là:721;631;532
3 số đó là : 721;631;532
Học Tốt !
@@