K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2016

Vì a + 1 và b + 2009 chia hết cho 6 nên a + b + 2010 chia hết cho 6.

Mà 2010 chia hết cho 6 nên a + b chia hết cho 6.

4a không chia hết cho 6 nên 4a + a + b không chia hết cho 6.

Bạn xem lại đề.

20 tháng 9 2016

Sai đề rồi

5 tháng 4 2018

4a+a+b chia hết cho6 :((((

5 tháng 4 2018

bn nói thế ai chẳng nói đc

1 tháng 3 2018

b, a+1 và b+2007 chia hết cho 6

=> a+1 và b+2007 đều chẵn

=> a và b đều lẻ 

=> a+b chẵn

Mà a là số nguyên dương nên 4^a chẵn

=> 4^a+a+b chẵn

=> 4^a+a+b chia hết cho 2 (1)

Lại có : a+1 và b+2007 chia hết cho 3

=> a chia 3 dư 2 và b chia hết cho 3

=> a+b chia 3 dư 2

Mặt khác : 4^a = (3+1)^a = B(3)+1 chia 3 dư 1

=> 4^a+a+b chia hết cho 3 (2)

Từ (1) và (2) => 4^a+a+b chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )

Tk mk nha

30 tháng 6 2020

Vì chưa thấy ai giải câu a nên thầy sẽ giải hộ nhé

Ta có \(32\equiv1\left(mod31\right)\Rightarrow32^{402}\equiv1^{402}=1\left(mod31\right)\)(Theo thuyết đồng dư)

nên \(32^{402}=2^{2010} \)chia 31 dư 1 suy ra \(2^{2011}\)chia 31 dư 2

Phần còn lại em tự làm nhé

15 tháng 2 2019

Vì a,b là các số nguyên dương nên:

\(4^a\equiv1\left(mod3\right)\)

\(\Rightarrow4^a+2\equiv0\left(mod3\right)\)

Mà \(4^a+2\equiv0\left(mod2\right)\)

\(\Rightarrow4^a+2\equiv0\left(mod6\right)\) vì \(\left(2;3\right)=1\)

Ta có:\(4^a+a+b=\left(4^a+2\right)+\left(a+1\right)+\left(b+2007\right)-2010⋮6\)

Vậy \(4^a+a+b⋮6\)

16 tháng 2 2019

lm lại (đầy đủ hơn) haizz

\(4\equiv1\left(\text{mod 3}\right)\Rightarrow4^a\equiv1^a\left(\text{mod 3}\right)\Rightarrow4^a\equiv1\left(\text{mod 3}\right)\)

\(4^a+a+b=4^a+a+1+b+2006-2007\)

vì a+1 và a+2007 chia hết cho 6=>a+b+2008 chia hết cho 3=>a+b+2007 chia 3 dư 2=>4^a+a+b chia hết cho 3 và 2007 chia hết cho 3=>4^a+a+b chia hết cho 3

a+1 và b+2007 chia hết cho 6=>a+1 chia hết cho 2=>a lẻ và  b lẻ

4^a+a+b chẵn=>4^a+a+b chia hết cho 2=> 4^a+a+b chia hết cho 2.3 hay chia hết cho 6

Vậy: 4^a+a+b chia hết cho 6 (đpcm)

4 tháng 3 2020

Câu hỏi của Trần Anh - Toán lớp 8 - Học toán với OnlineMath

Tham khảo!

17 tháng 2 2020

Ta có: \(b+2019=\left(b+3\right)+2016\)(*)

Mà \(2016⋮6\)kết hợp với \(\left(^∗\right)⋮6\Rightarrow b+3⋮6\)

Lại có: a + 1 chia hết cho 6 nên \(\left(a+1\right)+\left(b+3\right)⋮6\)

\(\Rightarrow a+b+4⋮6\)

\(\Rightarrow a+b+4^a+\left(4-4^a\right)⋮6\)(1)

Xét a + 1 chia hết cho 6 nên a chia 6 dư 5.Đặt a = 6k + 5

\(\Rightarrow4-4^a=4-4^{6k+5}=4\left(1-4^{6k+4}\right)\)

Ta có:\(4\left(1-4^{6k+4}\right)⋮2\)

Mặt khác: \(1\text{≡}4\left(mod3\right)\)và \(4^{6k+4}\text{≡}4\left(mod3\right)\)

\(\Rightarrow\left(1-4^{6k+4}\right)⋮3\)

Lúc đó \(4\left(1-4^{6k+4}\right)⋮6\)(vì (2,3)=1) (2)

Từ (1) và (2) suy ra \(a+b+4^a⋮6\left(đpcm\right)\)

15 tháng 6 2021

Đặt A = \(\frac{1}{6}\left(10^n+a+b\right)=\frac{1}{6}\left(10^n-2020+a+1+b+2019\right)\)

Vì \(\hept{\begin{cases}a+1⋮6\\b+2019⋮6\end{cases}\Rightarrow a+1+b+2019⋮6\Rightarrow\frac{1}{6}\left(a+1+b+2019\right)\inℕ}\)(1)

Để \(A\inℕ\Rightarrow10^n-2020⋮6\)

Nhận thấy 10n = (4 + 6)n = 4 +B(6) 

=> 10n chia 6 dư 4

mà 2020 chia 6 dư 4

=> 10n - 2020 \(⋮\)

=> \(\frac{1}{6}\left(10^n-2020\right)\inℕ\)(2)

Từ (1) và (2) => A \(\inℕ\)

21 tháng 2 2016

Ta chứng minh: 4a chia 6 dư 4(1)

-Với a=1=>4a =41=4 chia 6 dư 4(thỏa mãn)

Giả sử (1) luôn đúng với mọi n=k=>4k chia 6 dư 4, ta càn chứng minh (1) cũng luôn đúng với mọi n=k+1, chứng minh: : 4k+1 chia 6 dư 4

Ta có: 4k chia 6 dư 4

=>4k đồng dư với 4(mod 6)

=>4k.4 đồng dư với 4.4(mod 6)

=>4k+1 đồng dư với 16(mod 6)

=>4k+1 đồng dư với 4(mod 6)

=>4k+1 chia 6 dư 4

=>thỏa mãn

=>Phép quy nạp đã được chứng minh=>ĐPCM

=>4a chia 6 dư 4

=>4a-4 chia hết cho 6

Lại có: a+1, b+2007 chia hết cho 6

=>a+1+ b+2007 chia hết cho 6

=>a+ b+2008 chia hết cho 6

=>a+b+4+2004 chia hết cho 6

mà 2004 chia hết cho 6

=>a+ b+4 chia hết cho 6

mà 4a-4 chia hết cho 6

=>4a-4+a+b+4 chia hết cho 6

=>4a+a+b chia hết cho 6

Vậy 4a+a+b chia hết cho 6

21 tháng 2 2016

Do a+1 và b+2007chia hết cho 6. Do đó a,b:lẻ. Thật vậy nếu a,b chẵn

\(\Rightarrow\) a+1,b+2007/chia hết cho 2

\(\Rightarrow\)a+1,b+2007/chia hết cho 6

Điều nói trên trái với giả thiết.

Vậy a,b luôn lẻ.

Do đó:41+MỘTchia hết+2.b

Ta có:một + 1,b+chia hết 2007

\(\Rightarrow\)a+1+b+2007 chia hết cho 6

\(\Rightarrow\)(một +b+1)chia hết+3.2007

\(\Rightarrow\)a+b+1chia hết cho 3.\(\leftrightarrow\)

Ta thấy41+Một+b=(41-1)+(một +b+1)

Lại có:41-1chia hết (4-1)=3\(\leftrightarrow\)(*)

Từ\(\leftrightarrow\)và(*),Suy ra:41+Một +b chia hết+3

Mặt khác(2;3)=1. Do đó: 41+Một+b chia hết cho 6 

17 tháng 12 2015

a; Đặt A= \(a^{2017}+a^{2015}+1\)

\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)

\(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)

\(\Rightarrow A\) chia hết cho \(a^2+a+1\)

do \(a^2+a+1\) > 1 (dễ cm đc)

mà A là số nguyên tố

\(\Rightarrow A=a^2+a+1\)

hay \(a^{2017}+a^{2015}+1=a^2+a+1\)

\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)

\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)

do a dương => a>0 => a-1=0=> a=1(t/m)

Kết Luận:...

chỗ nào bạn chưa hiểu cứ nói cho mình nha :3