chứng minh rằng nếu 1 tam giác có 2 trung tuyến bằng nhau thì đó là tam giác cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tam giác đề bài cho là ΔABC có BD,CE là các trung tuyến, BD=CE. Cần chứng minh ΔABC cân tại A
Gọi G là giao điểm của BD và CE
Xét ΔABC có
BD,CE là trung tuyến
BD cắt CE tại G
=>G là trọng tâm
=>GB=2/3BD và GC=2/3CE
mà BD=CE
nên GB=GC
=>góc GBC=góc GCB
Xét ΔDBC và ΔECB có
BC chung
góc DBC=góc ECB
DB=EC
=>ΔDBC=ΔECB
=>góc DCB=góc EBC
=>ΔABC cân tại A
Giả sử ΔABC có hai đường trung tuyến BD và CE bằng nhau.
Gọi I là giao điểm BD và CE, ta có:
BI = 2/3 BD (tính chất đường trung tuyến) (1)
CI = 2/3 CE (tính chất đường trung tuyến) (2)
Từ (1), (2) và giả thiết BD = CE suy ra: BI = CI
Do BD = CE suy ra: BI + ID = CI + IE
Mà BI = CI ( chứng minh trên) nên : ID = IE
Xét ΔBIE và ΔCID, ta có:
BI = CI (chứng minh trên)
∠(BIE) = ∠(CID) (đối đỉnh)
IE = ID (chứng minh trên)
Suy ra: ΔBIE = ΔCID (c.g.c)
Suy ra: BE = CD (hai cạnh tương ứng) (3)
Lại có: BE = 1/2 AB (vì E là trung điểm AB) (4)
CD = 1/2 AC (vì D trung điểm AC) (5)
Từ (3), (4) và (5) suy ra: AB = AC.
Vậy tam giác ABC cân tại A.
Gọi Δ ABC có trung tuyến BM = CN, G là trọng tâm Δ (giao điểm các trung tuyến)
Ta có :
GB = 2/3.BM
GC = 2/3.CN
Mà BM = CN => GB = GC
=> Δ BGC cân tại G
=> ∠ MBC = ∠ NCB
Xét Δ BMC và Δ CNB :
BM = CN
∠ MBC = ∠ NCB
BC là cạnh chung
=> Δ BMC = Δ CNB (c - g - c)
=> ∠ MCB = ∠ NBC
hay ∠ ACB = ∠ ABC
=> Δ ABC cân tại A (đpcm)
giả sử có tam giác ABC và 2 đường trung tuyến CN và BM cắt nhau tại G, ta chứng minh AB=AC
xét 2 tam giác: NBG và MCG có:
góc NGB = góc MGC ( vì 2 góc đối đỉnh ) (1)
vì BM, CN là trung tuyến (gt)
=> BG = 2/3 BM, CG = 2/3 CN
mà BM = CN (gt) => BG = CG (2)
=> NG = 1/3 NC, MG = 1/3 MB
=> NG = MG (3)
từ (1) , (2), (3) => tam giác NGB = tam giác MGC (c.g.c)
=> NB = MC (2 cạnh tương ứng)
=> AB = AC (vì NB = 1/2 AB, MC = 1/2 AC)
=> tam giác ABC cân tại A ( đpcm)
Giả sử ΔABC có hai đường trung tuyến BD và CE bằng nhau.
Gọi I là giao điểm BD và CE, ta có:
BI = 2/3 BD (tính chất đường trung tuyến) (1)
CI = 2/3 CE (tính chất đường trung tuyến) (2)
Từ (1), (2) và giả thiết BD = CE suy ra: BI = CI
Suy ra: BI + ID = CI + IE ⇒ ID = IE
Xét ΔBIE và ΔCID, ta có:
BI = CI (chứng minh trên)
∠(BIE) = ∠(CID) (đối đỉnh)
IE = ID (chứng minh trên)
Suy ra: ΔBIE = ΔCID (c.g.c)
Suy ra: BE = CD (hai cạnh tương ứng) (3)
Lại có: BE = 1/2 AB (vì E là trung điểm AB) (4)
CD = 1/2 AC (vì D trung điểm AB) (5)
Từ (3), (4) và (5) suy ra: AB = CD.
Vậy tam giác ABC cân tại A.
Gọi BM, CN là 2 đường trung tuyến của \(\Delta ABC\)
\( \Rightarrow \)MA = MC = \(\dfrac{1}{2}\)AC; NA = NB = \(\dfrac{1}{2}\)AB
Vì \(\Delta ABC\) cân tại A nên AB = AC ( tính chất)
Do đó, AM = MC = NA = NB
Xét \(\Delta \)ANC và \(\Delta \)AMB, ta có:
AN = AM
\(\widehat A\) chung
AC = AB
\( \Rightarrow \)\(\Delta \)ANC = \(\Delta \)AMB (c.g.c)
\( \Rightarrow \) NC = MB ( 2 cạnh tương ứng)
Vậy 2 đường trung tuyến ứng với 2 cạnh bên của tam giác cân là hai đoạn thẳng bằng nhau.
Vì \(∆ABC\) có hai đường trung tuyến \(BM\) và \(CN\) cắt nhau ở \(G\)
\(\Rightarrow \) \(G\) là trọng tâm của tam giác \(ABC\).
\(\Rightarrow GB = \dfrac{2}{3}BM\); \(GC = \dfrac{2}{3}CN\) ( tính chất đường trung tuyến trong tam giác)
Mà \(BM = CN\) (giả thiết) nên \(GB = GC.\)
Tam giác \(GBC\) có \(GB = GC\) nên \(∆GBC\) cân tại \(G\).
\(\Rightarrow \) \(\widehat{GCB} = \widehat{GBC}\) (Tính chất tam giác cân).
Xét \(∆BCN\) và \(∆CBM\) có:
+) \(BC\) là cạnh chung
+) \(CN = BM\) (giả thiết)
+) \(\widehat{GCB} = \widehat{GBC}\) (chứng minh trên)
Suy ra \(∆BCN = ∆CBM\) (c.g.c)
\(\Rightarrow \) \(\widehat{NBC} = \widehat{MCB}\) (hai góc tương ứng).
\(\Rightarrow ∆ABC\) cân tại \(A\) (tam giác có hai góc bằng nhau là tam giác cân)
giả sử tam giác ABC có 2 đường trung tuyến BM và CN gặp nhau ở G
=> G là trong tâm của tam giác
-> GB=BM ; GC = CN
mà BM=CN (gt) nên GB = GC
=> tam giác GBC cân tại G
Do đó tam giác BCN=tam giác CBM vì:
BC là cạnh chung
CN = BM (gt)
=> tam giác ABC cân tại A
xét tam giác ABD và ACE :
E=D (=90o)
CE=BD (gt)
A:chung
suy ra tam giác ABD =ACE(ch_gn)
suy ra góc B=C(t/ư)
xét tam giác EIB&DIC:
E=D(=90o)
IE=ID
B=C
suy ra tam giácEIB=DIC
suy ra IB=IC
suy ra tam giác BIC cân tại I, suy ra B=C
suy ra:đpcm
giả sử tam giác ABC có 2 đường trung tuyến BM và CN gặp nhau ở G
=> G là trong tâm của tam giác
-> GB=BM ; GC = CN
mà BM=CN (gt) nên GB = GC
=> tam giác GBC cân tại G
Do đó tam giác BCN=tam giác CBM vì:
BC là cạnh chung
CN = BM (gt)
=> tam giác ABC cân tại A