1/4+1/12+1/30+...+1/972
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}\)
\(3A=3\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}+\frac{1}{972}\right)\)
\(3A=\frac{3}{4}+\frac{3}{12}+\frac{3}{36}+\frac{3}{108}+\frac{3}{324}+\frac{3}{927}\)
\(3A=\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}\)
\(2A=3A-A\)
\(2A=\left(\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}\right)-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}+\frac{1}{324}+\frac{1}{972}\right)\)
\(2A=\frac{3}{4}-\frac{1}{927}\)
\(2A=\frac{729-1}{972}=\frac{728}{972}=\frac{182}{243}\)
\(A=\frac{182}{243}:\frac{1}{2}\)
\(A=\frac{364}{243}\)
Đặt A= 1/4+1/12+1/36+1/108+1/324 +1/972
=1/4.(1+1/3+1/9+1/27+1/81+1/243)
=1/4(1+1/3 +1/3^2 +1/3^3 +1/3^4 +1/3^5)
gọi M=1+1/3+1/3^2+1/3^3+1/3^4+1/3^5
3M=3+1+1/3+1/3^2+1/3^3+1/3^4
3M-M=(3+1+1/3+1/3^2+1/3^3+1/3^4)-(1+1/3+1/3^2+1/3^3+1/3^4+1/3^5)
2M=3-1/3^5
M=3/2-1/3^5.2
A=1/4.(3/2-1/3^5.2)
A=3/8-1/1944=91/243
Vậy .......
Chúc bạn học tốt .....^-^
\(A=\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+...+\frac{1}{972}+\frac{1}{2916}\)
\(3A=\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+...+\frac{1}{324}+\frac{1}{972}\)
\(3A-A=\left(\frac{3}{4}+\frac{1}{4}+\frac{1}{12}+...+\frac{1}{324}+\frac{1}{972}\right)-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{36}+...+\frac{1}{972}+\frac{1}{2916}\right)\)
\(2A=\frac{3}{4}-\frac{1}{2916}\)
\(A=\frac{1093}{2916}\)
A=14+112+136+...+1972+12916
3A=34+14+112+...+1324+1972
3A−A=(34+14+112+...+1324+1972)−(14+112+136+...+1972+12916)
2A=34−12916
A=10932916
`Answer:`
`1/4 + 1/12 + 1/36 + ... + 1/972` (Mình sửa đề nhé.)
Đặt `A = 1/4 + 1/12 + 1/36 + ... + 1/972`
`=> 3A = 3 (1/4 + 1/12 + 1/36 + ... + 1/972)`
`=> 3A = 3/4 + 3/12 + 3/36 + ... + 3/972`
`=> 3A - A = ( 3/4 + 3/12 + 3/36 + ... + 3/972) - (1/4 + 1/12 + 1/36 + ... + 1/972)`
`=> 2A = 3/4 - 1/972`
`=> 2A = 182/243`
`=> A = 182/243 : 2`
`=> A = 364/243`