Tìm số tự nhiên n sao cho x2n+xn+1 chia hết cho x2+x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(A\left(x\right)=x^{2n}+x^n+1\) chỉ có một hằng số là1
đa thức \(x^2+x+1\) cũng chỉ có một hằng số là 1
Để \(A\left(x\right)⋮x^2+x+1\) thì thì \(A\left(x\right)\) phải có số mũ tương ứng với các bậc như đa thức : => n=1
A(x)=(1-x^n)(1+x^n)/(1-x)(1+x)
B(x)=1-x^n/1-x
A(x) chia hết cho B(x) khi 1-x^n chia hết cho 1+x
x^n+1/x+1=A(x)+(1+(-1)^n)/(x+1)
=>1-x^n chia hết cho 1+x khi và chỉ khi n=2k+1
a.đặt a+15=b2;a-1=c2
=>(a+15)-(a-1)=b2-c2=(b+c)(b-c)
=>(b+c)(b-c)=16
ta có 2 nhận xét:
*(b+c)-(b-c)=2c là 1 số chẵn nên 2 số b+c và b-c là 2 số cùng tính chẵn lẻ.Mà 16 là số chẵn nên 2 số b+c và b-c cùng chẵn.
*b+c>b-c(vì a là số tự nhiên)
=>b+c=8 và b-c=2 =>b=(8+2):2=5
vậy a+15=52=>a=10
Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo link trên nhé!
a:
b: \(x^2+117=y^2\)
=>\(x^2-y^2=-117\)
=>\(\left(x-y\right)\left(x+y\right)=-117\)
\(Ư\left(-117\right)=\left\{1;-1;3;-3;9;-9;13;-13;39;-39;117;-117\right\}\)
=>\(-117=1\cdot\left(-117\right)=\left(-1\right)\cdot117=3\cdot\left(-39\right)=\left(-3\right)\cdot39=\left(9\right)\cdot\left(-13\right)=\left(-9\right)\cdot13\)
TH1: x-y=1 và x+y=-117
=>2x=-116 và x-y=1
=>x=-58(loại)
TH2: x-y=-1 và x+y=117
=>2x=118 và x-y=-1
=>x=59 và y=59+1=60(loại)
TH3: x-y=-3 và x+y=39
=>2x=42 và x-y=-3
=>x=21(loại)
TH4: x-y=3 và x+y=-39
=>2x=-42 và x-y=3
=>x=-21(loại)
TH5: x-y=9 và x+y=-13
=>2x=-4 và x-y=9
=>x=-2(loại)
TH6: x-y=-9 và x+y=13
=>2x=4 và x-y=-9
=>x=2 và y=2+9=11
=>Nhận
Vậy: x=2 và y=11
Bài 2:
\(n^3-n^2+2n+7⋮n^2+1\)
\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)
\(\Leftrightarrow n^2-64⋮n^2+1\)
\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)
\(\Leftrightarrow n\in\left\{0;8;-8\right\}\)