\(\frac{15}{90\times94}\) + \(\frac{15}{94\times98}\)+ \(\frac{15}{98\times102}\)+ ... + \(\frac{15}{146\times150}\)
Đề bài là tính nhanh nếu có thể
Làm giúp mình với vì ngày mai mình đi học rôi
Cảm ơn các bạn nhiều nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{15}{90.94}+\frac{15}{94.98}+\frac{15}{98.102}+...+\frac{15}{146.150}\)
= \(15.\left(\frac{1}{90.94}+\frac{1}{94.98}+\frac{1}{98.102}+...+\frac{1}{146+150}\right)\)
= \(15.\left[\frac{1}{4}.\left(\frac{4}{90.94}+\frac{4}{94.98}+\frac{4}{98.102}+...+\frac{4}{146+150}\right)\right]\)
= \(15.\left[\frac{1}{4}.\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+\frac{1}{98}-\frac{1}{102}+...+\frac{1}{146}-\frac{1}{150}\right)\right]\)
= \(15.\left[\frac{1}{4}.\left(\frac{1}{90}-\frac{1}{150}\right)\right]\)
= \(15.\left(\frac{1}{4}.\frac{1}{225}\right)\)
= \(=\frac{1}{60}\)
Bài làm
\(\frac{15}{90.94}+\frac{15}{94.98}+\frac{15}{98.102}+...+\frac{15}{146.150}\)
= \(15.\frac{1}{90.94}+15.\frac{1}{94.98}+15.\frac{1}{98.102}+...+15.\frac{1}{146.150}\)
= \(15.\left(\frac{1}{90.94}+\frac{1}{94.98}+\frac{1}{98.102}+...+\frac{1}{146.150}\right)\)
= \(15.\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+\frac{1}{98}-\frac{1}{102}+...+\frac{1}{146}-\frac{1}{150}\right)\)
= \(15.\left(\frac{1}{90}-\frac{1}{150}\right)\)
= \(15.\left(\frac{5}{450}-\frac{3}{450}\right)\)
= \(15.\frac{2}{450}\)
= \(\frac{2}{30}\)
# Chúc bạn học tốt #
Ta có:
A = [15 x (1-1/7-1/12-1/98)] / [ 18 x (1-1/7-1/12-1/98)]
= 15/18 = 5/6
\(A=\frac{15\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}{18\left(1-\frac{1}{7}-\frac{1}{12}-\frac{1}{98}\right)}=\frac{15}{18}=\frac{15:3}{18:3}=\frac{5}{6}\)
k cho mk nha
B=2/1.3 + 2/3.5 + 2/5.7 +...+ 2/299.301
B=1-1/3+1/3-1/5+1/5-1/7+...+1/299-1/301=1-1/301=300/301
\(Ta có: \frac{2}{3}=\frac{1}{1}-\frac{1}{3}\);
\(\frac{2}{15}=\frac{1}{3}-\frac{1}{5}\);
\(\frac{2}{35}=\frac{1}{5}-\frac{1}{7}\) ; ... ; \(\frac{2}{89999}=\frac{1}{299}-\frac{1}{301}\).
=> B= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{299}-\frac{1}{301}\)
=> B=\(\frac{1}{1}-\frac{1}{301}\)
=> B=\(\frac{300}{301}\)
A=\(\frac{1}{3}-\frac{3}{4}-\left(\frac{-3}{5}\right)+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
=\(\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
=\(\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)-\left(\frac{3}{4}+\frac{2}{9}+\frac{1}{36}\right)+\frac{1}{72}\)
=\(\left(\frac{14}{15}+\frac{1}{15}\right)-\left(\frac{35}{36}+\frac{1}{36}\right)+\frac{1}{72}\)
=1 - 1 + \(\frac{1}{72}\)= 0 + \(\frac{1}{72}\)= \(\frac{1}{72}\)
15/90 × 94 + 15/94 × 98 + 15/98 × 102 + ... + 15/146 × 150
= 15/4 × (4/90×94 + 4/94×98 + 4/98×102 + ... + 4/146×150)
= 15/4 × (1/90 - 1/94 + 1/94 - 1/98 + 1/98 - 1/102 + ... + 1/146 - 1/150)
= 15/4 × (1/90 - 1/150)
= 15/4 × 1/30 × (1/3 - 1/5)
= 1/8 × 2/15
= 1/60