K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2022

Phương trình hoành độ giao điểm của (d) và (P) là:

2x^2 = 2x + m <=> 2x^2 - 2x - m = 0

delta' = (-1)^2 - 2.(-m) = 1 + 2m

a) delta' > 0 <=> 1 + 2m > 0 <=> m > -1/2

b) delta' = 0 <=> 1 + 2m = 0 <=> m = -1/2

c) delta' = 0 <=> 1 + 2m < 0 <=> m < -1/2

6 tháng 4 2022

Xét phương trình hoành độ giao điểm: \(2x^2=2x+m\Leftrightarrow2x^2-2x-m=0\left(1\right)\)

\(\Delta=4+8m\)

a) (d) và (P) cắt nhau tại hai điểm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow4+8m>0\Leftrightarrow m>-\dfrac{1}{2}\)

b) (d) tiếp xúc với (P) khi và chỉ khi PT (1) có nghiệm duy nhất

\(\Leftrightarrow\Delta=0\Leftrightarrow4+8m=0\Leftrightarrow m=-\dfrac{1}{2}\)

c) (d) không cắt (P) khi và chỉ khi PT (1) vô nghiệm

\(\Leftrightarrow\Delta< 0\Leftrightarrow4+8m< 0\Leftrightarrow m< -\dfrac{1}{2}\)

21 tháng 5 2021

a) Xét phương trình hoành độ giao điểm (d) và (P)

           \(x^2 = 2(m+1)x - 4\)

     \(<=> x^2 -2(m+1) + 4 = 0\) (1)

có \(\Delta' = [-(m+1)]^2 -4\)

\(\Delta' = (m+1)^2- 4\)

(d) và (P) cắt nhau tại hai điểm phân biệt

<=> Phương trình (1) có hai nghiệm phân biệt

<=> \(\Delta' \)> 0

<=> \((m + 1)^2 - 4 >0\)

<=> \((m+1)^2 >4\)

<=> \(\left[ \begin{array}{l}m+1 > 2\\m+1 <- 2\end{array} \right. \)

\(<=> \left[ \begin{array}{l}m > 1\\m < -3\end{array} \right. \)

b) Vì x1;x2 là hoành độ giao điểm của (d) và (P)

nên x1;x2 là hai nghiệm của phương trình (1)
Áp dụng hệ thức Viet có x1 + x= 2(m+1)

                                        x1x= 4

Mà \(\sqrt{x_1} - \sqrt{x_2} = 2\)(x1;x\(\geq \) 0)

=> \((\sqrt{x_1} - \sqrt{x_2})^2 = 4\)

<=> x1 - 2x1x2 + x2 = 4

<=> (x+ x2) - 2x1x2=4

<=> 2(m+1) - 2.4 = 4

<=> 2m + 2 - 8 = 4

<=> 2m = 10

<=> m = 5 (T/m)

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Đoạn \((\sqrt{x_1}-\sqrt{x_2})^2=4\)

\(\Rightarrow x_1-2\sqrt{x_1x_2}+x_2=4\) chứ bạn.

19 tháng 3 2022

a, Hoành độ giao điểm tm pt 

\(x^2-\left(m+4\right)x+4m=0\)

\(\Delta=\left(m+4\right)^2-4.4m=m^2+8m+16-16m=\left(m-4\right)^2\)

Để pt có 2 nghiệm pb hay (P) cắt (d) tại 2 điểm pb khi m khác 4 

b, Thay m = -2 vào ta được 

\(x^2-2x-8=0\Leftrightarrow\left(x-1\right)^2-9=0\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\Leftrightarrow x=4;x=-2\)

Với x = 4 => y = 16 ; x = -2 => y = 4 

Vậy với m = -2 thì (P) cắt (d) tại A(4;16) ; B(-2;4) 

19 tháng 3 2022

cho e hỏi là a tính kiểu gì ra (x - 4) (x +2) vậy ạ 

12 tháng 6 2017

Bài 1:đường thẳng (d) là y= ax+b 

NHA MỌI NGƯỜI :>>

12 tháng 6 2017

Bài 1: đường thẳng (d) là y=ax+b

NHA MỌI NGƯỜI :>>

a: PTHĐGĐ là:

x^2-4x+4m^2+1=0

Δ=(-4)^2-4(4m^2+1)

=16-16m^2-4=-16m^2+12

Để (d) cắt (P) tại hai điểm phân biệt thì -16m^2+12>0

=>-16m^2>-12

=>m^2<3/4

=>\(-\dfrac{\sqrt{3}}{2}< m< \dfrac{\sqrt{3}}{2}\)

b: x1,x2 nguyên

=>x1+x2 nguyên và x2*x1 nguyên

=>4 nguyên và 4m^2+1 nguyên

=>4m^2 nguyên

=>m^2 nguyên

=>\(m=k^2\left(k\in Z\right)\)

Phương trình hoành độ giao điểm là:

\(3x^2=2x-m\)

\(\Leftrightarrow3x^2-2x+m=0\)

\(\Delta=\left(-2\right)^2-4\cdot3\cdot m\)

\(\Leftrightarrow\Delta=4-12m=-12m+4\)

Khi \(\Delta>0\) thì Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1\cdot x_2=\dfrac{m}{3}\\x_1+x_2=\dfrac{2}{3}\end{matrix}\right.\)

Để (d) cắt (P) tại hai điểm phân biệt ở bên phải Oy thì phương trình hoành độ giao điểm của (P) và (d) có hai nghiệm phân biệt cùng dương

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\x_1\cdot x_2>0\\x_1+x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-12m+4\ge0\\\dfrac{m}{3}>0\\\dfrac{2}{3}>0\left(đúng\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{1}{3}\\m>0\end{matrix}\right.\Leftrightarrow0< m\le\dfrac{1}{3}\)

11 tháng 1

hình như là anh sai chỗ phải Δ>0 để 2 nghiệm phân biệt chứ còn Δ≥0 thì nó có thể sẽ thành nghiệm kép mấtoho

NV
24 tháng 2 2021

Pt hoành độ giao điểm:

\(x^2-mx+m-1=0\)

\(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2>0\Leftrightarrow m\ne2\)

\(\left\{{}\begin{matrix}\left|x_1\right|=x_2\Rightarrow x_2\ge0\\x_2>x_1\end{matrix}\right.\) \(\Rightarrow x_2=-x_1>0\)

\(\Leftrightarrow x_1+x_2=0\)

\(\Rightarrow m=0\)

a) Phương trình hoành độ giao điểm: 

\(x^2=mx-m+1\)

\(\Leftrightarrow x^2-mx+m-1=0\)

\(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)

Để (d) cắt (P) tại hai điểm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow m-2\ne0\)

hay \(m\ne2\)

Vậy: Để (d) cắt (P) tại hai điểm phân biệt thì \(m\ne2\)