Cho Parabol (P) y=2x^2 và đường thẳng (d) y= 2x +m
Tìm m để a) (d) và (P) cắt nhau tại 2 điểm phân biệt
b) (d) tiếp xúc với (P)
c) (d) không cắt (P)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét phương trình hoành độ giao điểm (d) và (P)
\(x^2 = 2(m+1)x - 4\)
\(<=> x^2 -2(m+1) + 4 = 0\) (1)
có \(\Delta' = [-(m+1)]^2 -4\)
\(\Delta' = (m+1)^2- 4\)
(d) và (P) cắt nhau tại hai điểm phân biệt
<=> Phương trình (1) có hai nghiệm phân biệt
<=> \(\Delta' \)> 0
<=> \((m + 1)^2 - 4 >0\)
<=> \((m+1)^2 >4\)
<=> \(\left[ \begin{array}{l}m+1 > 2\\m+1 <- 2\end{array} \right. \)
\(<=> \left[ \begin{array}{l}m > 1\\m < -3\end{array} \right. \)
b) Vì x1;x2 là hoành độ giao điểm của (d) và (P)
nên x1;x2 là hai nghiệm của phương trình (1)
Áp dụng hệ thức Viet có x1 + x2 = 2(m+1)
x1x2 = 4
Mà \(\sqrt{x_1} - \sqrt{x_2} = 2\)(x1;x2 \(\geq \) 0)
=> \((\sqrt{x_1} - \sqrt{x_2})^2 = 4\)
<=> x1 - 2x1x2 + x2 = 4
<=> (x1 + x2) - 2x1x2=4
<=> 2(m+1) - 2.4 = 4
<=> 2m + 2 - 8 = 4
<=> 2m = 10
<=> m = 5 (T/m)
Đoạn \((\sqrt{x_1}-\sqrt{x_2})^2=4\)
\(\Rightarrow x_1-2\sqrt{x_1x_2}+x_2=4\) chứ bạn.
a, Hoành độ giao điểm tm pt
\(x^2-\left(m+4\right)x+4m=0\)
\(\Delta=\left(m+4\right)^2-4.4m=m^2+8m+16-16m=\left(m-4\right)^2\)
Để pt có 2 nghiệm pb hay (P) cắt (d) tại 2 điểm pb khi m khác 4
b, Thay m = -2 vào ta được
\(x^2-2x-8=0\Leftrightarrow\left(x-1\right)^2-9=0\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\Leftrightarrow x=4;x=-2\)
Với x = 4 => y = 16 ; x = -2 => y = 4
Vậy với m = -2 thì (P) cắt (d) tại A(4;16) ; B(-2;4)
a: PTHĐGĐ là:
x^2-4x+4m^2+1=0
Δ=(-4)^2-4(4m^2+1)
=16-16m^2-4=-16m^2+12
Để (d) cắt (P) tại hai điểm phân biệt thì -16m^2+12>0
=>-16m^2>-12
=>m^2<3/4
=>\(-\dfrac{\sqrt{3}}{2}< m< \dfrac{\sqrt{3}}{2}\)
b: x1,x2 nguyên
=>x1+x2 nguyên và x2*x1 nguyên
=>4 nguyên và 4m^2+1 nguyên
=>4m^2 nguyên
=>m^2 nguyên
=>\(m=k^2\left(k\in Z\right)\)
Phương trình hoành độ giao điểm là:
\(3x^2=2x-m\)
\(\Leftrightarrow3x^2-2x+m=0\)
\(\Delta=\left(-2\right)^2-4\cdot3\cdot m\)
\(\Leftrightarrow\Delta=4-12m=-12m+4\)
Khi \(\Delta>0\) thì Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1\cdot x_2=\dfrac{m}{3}\\x_1+x_2=\dfrac{2}{3}\end{matrix}\right.\)
Để (d) cắt (P) tại hai điểm phân biệt ở bên phải Oy thì phương trình hoành độ giao điểm của (P) và (d) có hai nghiệm phân biệt cùng dương
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\x_1\cdot x_2>0\\x_1+x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-12m+4\ge0\\\dfrac{m}{3}>0\\\dfrac{2}{3}>0\left(đúng\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{1}{3}\\m>0\end{matrix}\right.\Leftrightarrow0< m\le\dfrac{1}{3}\)
Pt hoành độ giao điểm:
\(x^2-mx+m-1=0\)
\(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2>0\Leftrightarrow m\ne2\)
\(\left\{{}\begin{matrix}\left|x_1\right|=x_2\Rightarrow x_2\ge0\\x_2>x_1\end{matrix}\right.\) \(\Rightarrow x_2=-x_1>0\)
\(\Leftrightarrow x_1+x_2=0\)
\(\Rightarrow m=0\)
a) Phương trình hoành độ giao điểm:
\(x^2=mx-m+1\)
\(\Leftrightarrow x^2-mx+m-1=0\)
\(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)
Để (d) cắt (P) tại hai điểm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow m-2\ne0\)
hay \(m\ne2\)
Vậy: Để (d) cắt (P) tại hai điểm phân biệt thì \(m\ne2\)
Phương trình hoành độ giao điểm của (d) và (P) là:
2x^2 = 2x + m <=> 2x^2 - 2x - m = 0
delta' = (-1)^2 - 2.(-m) = 1 + 2m
a) delta' > 0 <=> 1 + 2m > 0 <=> m > -1/2
b) delta' = 0 <=> 1 + 2m = 0 <=> m = -1/2
c) delta' = 0 <=> 1 + 2m < 0 <=> m < -1/2
Xét phương trình hoành độ giao điểm: \(2x^2=2x+m\Leftrightarrow2x^2-2x-m=0\left(1\right)\)
\(\Delta=4+8m\)
a) (d) và (P) cắt nhau tại hai điểm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow4+8m>0\Leftrightarrow m>-\dfrac{1}{2}\)
b) (d) tiếp xúc với (P) khi và chỉ khi PT (1) có nghiệm duy nhất
\(\Leftrightarrow\Delta=0\Leftrightarrow4+8m=0\Leftrightarrow m=-\dfrac{1}{2}\)
c) (d) không cắt (P) khi và chỉ khi PT (1) vô nghiệm
\(\Leftrightarrow\Delta< 0\Leftrightarrow4+8m< 0\Leftrightarrow m< -\dfrac{1}{2}\)