ai làm đc bài này đi xy=x+y tìm x y nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy+x+y=4\\ x\left(y+1\right)+y+1=4+1=5\\ \left(x+1\right)\left(y+1\right)=5\)
\(x+1\) | \(5\) | \(1\) | \(-1\) | \(-5\) |
\(y+1\) | \(1\) | \(5\) | \(-5\) | \(-1\) |
\(x\) | \(4\) | \(0\) | \(-2\) | \(-6\) |
\(y\) | \(0\) | \(4\) | \(-6\) | \(-2\) |
`<=> x(y - 2) + y - 2 + 3 = 0`
`<=> (x+1)(y-2) + 3 = 0`
`<=> (x+1)(y - 2) = -3`
`=> x + 1 in Ư(3)`
Đến đây chắc bạn tự làm được rồi ha, xét các ước của `x` và `y`.
Dễ thấy rằng y # 0 (để cho x : y là số xác định)
Hơn nữa x # 0, vì nếu x = 0 thì xy = x : y = 0 nhưng x - y # 0 (vì y # 0)
Vì xy = x : y suy ra y^2 = 1 ---> y = 1 hoặc y = -1
+ Nếu y = 1 ---> x - 1 = x.1 (vô nghiệm nên tr/hợp này loại)
+ Nếu y = -1 ---> x + 1 = - x ---> 2x = -1 ---> x = -1/2 (nhận)
Vậy x = -1/2 ; y = -1.
:)
gọi UCLN(2n+5, 3n+7) là d
ta có 2n+5 chia hết cho d => 3(2n+5) chia hết cho d <=> 6n+15 chia hết cho d(1)
3n+7 chia hết cho d => 2(3n+7) chia hết cho d <=> 6n+14 chia hết cho d(2)
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+5, 3n+7 ngtố cùng nhau(đpcm)
We have \(xy-7x+y=-22\)
\(\Leftrightarrow x\left(y-7\right)+y=-22\)
\(\Leftrightarrow x\left(y-7\right)+y-7=-29\)
\(\Leftrightarrow\left(y-7\right)\left(x+1\right)=-29\)
Because \(x,y\in Z\Rightarrow y-7,x+1\in Z\)
You can do it from here
x=3
y=1,5
nghĩ z
xy=x+y
=>x+y-xy=0
=>(x-xy)+(y-1)=(-1)
=>x(1-y)+(1-y)=(-1)
=>(x+1)(1-y)=(-1)
=>y=2 thì x=2
y=0 thì x=0