K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2016

\(1+\sqrt{5}\)

3 tháng 8 2016

Mình rút gọn như sau:

    \(\left(\sqrt{3-\sqrt{5}}\right).\left(\sqrt{10}-\sqrt{2}\right).\left(3+\sqrt{5}\right)\)

\(=\sqrt{\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}\right)^2}.\left(3\sqrt{10}+5\sqrt{2}-3\sqrt{2}-\sqrt{10}\right)\)

\(=\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{1}{2}}\right).\left(2\sqrt{10}+2\sqrt{2}\right)\)

\(=10+2\sqrt{5}-2\sqrt{5}-2\)

\(=8\)

(Chúc bạn học giỏi và tíck cho mìk vs nhá!)

    

9 tháng 1 2016

Điều kiện : x>=0

\(\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{\left(2+\sqrt{3}\right)^2}-x}{\sqrt[4]{\left(\sqrt{5}-2\right)^2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[3]{2+\sqrt{3}}-x}{\sqrt{\sqrt{5}-2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\frac{\sqrt[3]{1}-x}{\sqrt{1}+\sqrt{x}}=\sqrt{x}+\frac{1-x}{1+\sqrt{x}}=\sqrt{x}+\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\)

\(=\sqrt{x}+1-\sqrt{x}=1\)

26 tháng 5 2021

\(A=\dfrac{-\left(\sqrt{x}+1\right)\left(2+\sqrt{x}\right)-2\sqrt{x}\left(2-\sqrt{x}\right)+5\sqrt{x}+2}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(\sqrt{x}+2\right)^2}\)

\(A=\dfrac{-3\sqrt{x}-x-2-4\sqrt{x}+2x+5\sqrt{x}+2}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(A=\dfrac{-x-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(A=\dfrac{-\sqrt{x}\left(\sqrt{x}+2\right)^3}{\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)\sqrt{x}\left(3-\sqrt{x}\right)}=\dfrac{-\left(\sqrt{x}+2\right)^2}{\left(2-\sqrt{x}\right)\left(3-\sqrt{x}\right)}\)

 

26 tháng 5 2021

Mình sửa đầu bài

4 tháng 6 2017

a) \(\sqrt{15+2\sqrt{5}-\sqrt{21-4\sqrt{5}}}\)

\(=\sqrt{15+2\sqrt{5}-\sqrt{\left(1-2\sqrt{5}\right)^2}}\)

\(=\sqrt{15+2\sqrt{5}-\left(2\sqrt{5}-1\right)}\)

\(=\sqrt{15+2\sqrt{5}-\left(2\sqrt{5}-1\right)}\)

\(=\sqrt{15+2\sqrt{5}-2\sqrt{5}+1}\)

\(=\sqrt{16}\)

\(=4\)

b) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt[4]{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt[4]{5-\sqrt{3-\sqrt{\left(3-2\sqrt{5}\right)^2}}}\)

\(=\sqrt[4]{5-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)

\(=\sqrt[4]{5-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt[4]{5-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt[4]{5-\sqrt{\left(1-\sqrt{5}\right)^2}}\)

\(=\sqrt[4]{5-\left(\sqrt{5}-1\right)}\)

\(=\sqrt[4]{5-\sqrt{5}+1}\)

\(=\sqrt[4]{6-\sqrt{5}}\)

18 tháng 12 2022

a: \(A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(\Leftrightarrow A^3=9+4\sqrt{5}+9-4\sqrt{5}+3\cdot A\)

=>A^3-3A-18=0

=>A=3

b: \(B=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)

=>\(B^3=5\sqrt{2}+7-5\sqrt{2}+7+3B\)

=>B^3-3B-14=0

=>B=2,82

c: \(C^3=20+14\sqrt{2}-14\sqrt{2}+20-6C\)

=>C^3+6C-40=0

=>C=2,84