chứng tỏ đa thức R(x)=P(x)-Q(x)=x^3-x^2+x-6 chỉ có một nghiệm duy nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
1000 tăng 21 tức là tỉ lệ tăng là: 21:1000=2,1%
1 năm sau tăng: 4000x2,1%= 82 người
Số dân sau 1 năm: 4000+82=4082 người
b/ Tương tự tỉ lệ tăng: 15:1000=1,5%
Số dân sau 1 năm: 4000x1,5%+4000=4060 người
A, \(M\left(-1\right)=0\)
\(m\left(-1\right)^2+2m\left(-1\right)-3=0\)
\(-m-3=0\)
\(m=-3\).
B, \(A\left(x\right)=2x^3+x=x\left(2x^2+1\right)=0\)
\(\Leftrightarrow x=0\)vì \(2x^2+1>0\forall x\inℝ\).
A, Xét đa thức \(M\left(x\right)=mx^2+2mx-3\)
\(M\left(-1\right)=m-2m-3\)
Mà \(x=-1\) là 1 nghiệm của \(M\left(x\right)\)
\(\Rightarrow M\left(-1\right)=0\)
\(\Rightarrow m-2m-3=0\)
\(-m-3=0\)
\(\Rightarrow m=-3\)
Vậy \(m=-3\).
B, Cho \(A\left(x\right)=0\Rightarrow2x^3+x=0\)
\(\Rightarrow x\left(2x^2+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x^2+1=0\end{cases}}\)
Ta có: \(2x^2\ge0\forall x\)
\(\Rightarrow2x^2+1>0\)
\(\Rightarrow x=0\) là nghiệm của đa thức \(A\left(x\right)=2x^3+x\)
Vậy đa thức \(A\left(x\right)=2x^3+x\) có 1 nghiệm duy nhất là \(x=0\).
1 nha bạn
nhớ k cho mình nha
:)
mình nói đùa thôi không phải 1 đâu :V
R(x) = (x - 2)(x2 + x + 3)
Đễ thấy x2 + x + 3 >0
Nên R(x) chỉ có 1 nghiệm là 2