K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2016

Ta có: a

/b+1 + (-a/b)

= a.b/b.(b+1) + (b+1).(-a)/b.(b+1)

= a.b/b.(b+1) + (-a.b - a)/b.(b+1)

= a.b+(-a.b-a)/b.(b+1)

= a.b-a.b-a/b2 + b

= -a/b2 + b ( đpcm)

30 tháng 4 2017

\(\Leftrightarrow\frac{ab}{b\left(b+1\right)}+\frac{-a\left(b+1\right)}{b\left(b+1\right)}=\frac{-a}{b\left(b+1\right)}\)

\(\Rightarrow ab-a\left(b+1\right)=-a\)(khử mẫu)

\(\Leftrightarrow ab-ab-a=-a\)(đúng)

Vậy \(\frac{a}{b+1}+\frac{-a}{b}=\frac{-a}{b^2+b}\)

_Kik nha!! ^ ^

30 tháng 4 2017

Hê! biết làm rồi!

1 tháng 12 2016

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\)

\(\Leftrightarrow x+y+z=0\)

Ta có 

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Rightarrow x^3+y^3+z^3=3xyz\)

=> ĐPCM

1 tháng 12 2016

Mạnh Hùng hỏi được rồi á

1.Đặt P = ( a-b) / c + ( b-c)/a + ( c-a ) /b 
Nhân abc với P ta được ; P abc = ab( a-b) + bc ( b-c) + ac ( c-a ) 
= ab( a-b) + bc ( a-c + b-a ) + ac ( a-c) 
= ab( a-b) - bc ( a-b) - bc( c-a) + ca ( c-a) 
= b ( a-b)(a-c) - c ( a-b)(c-a) 
= ( b-c)(a-b)(a-c) 
=> P = (b-c)(a-b)(a-c) / abc 
Xét a + b +c = 0 ta được a + b = -c ; c+a = -b , b+c = -a 
Đặt Q = c/(a-b) + a/ ( b-c) + b/ ( c-a) 
Nhân ( b-c)(c-b)(a-c) . Q ta có : Q = c(c-a)(b-c) + a( a-b)(c-a) + b(a-b)(b-c) 
Q = c(c-a)(b-c) + (a-b)(-b-c)(c-a) +b( a-b)(b-c) 
Q = c(c-a)(b-c) - b(a-b)(c-a) + b(a-b)(b-c) - c( a-b)(c-a) 
Q = c(c-a)( -a+2b-c) + b(a-2c+b)(a-b) 
Q = - 3bc(a-b) + 3bc(c-a) 
Q = 3bc ( b+c-2a) 
Q = -9abc 
Suy ra => Q = 9abc / (a-b)(b-c)(c-a) 
Vây ta nhân P*Q = ( b-c)(a-b)(a-c) / abc * 9abc / ( a-b)(b-c)(c-a) ( gạch những hạng tử giống nhau đi) 
P*Q = 9 ( đpcm) 
**************************************... 
Chúc bạn học giỏi và may mắn

ta có : các ước tự nhiên của p^4 là:1,p,p2,p3,p4
Giả sử tồn tại 1 số p sao cho tổng các ước của p^4 là 1 số chính phương ta có:
1+p+p2+p3+p4=k2
đến đây rồi biến đổi tiếp,dùng phương pháp chặn 2 đầu là ra

Chúc hok tốt

ta xét tích: a.(b+1) = ab+a

                  b.(a+1) = ab+b

- Do a<b \(\Rightarrow\)ab+a<ab+b\(\Rightarrow\)a.(b+1)<b.(a+1)

Suy ra: \(\frac{a}{b}\)<\(\frac{a+1}{b+1}\)

10 tháng 2 2021

Theo giả thiết: \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{2}{\sqrt{ac}}\Leftrightarrow b^2\le ac\Leftrightarrow\frac{ac}{b^2}\ge1\)

Ta có: \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow b\left(a+c\right)=2ac\Leftrightarrow2ac-bc=ab\Leftrightarrow2a-b=\frac{ab}{c}\)\(\Rightarrow\frac{a+b}{2a-b}=\frac{a+b}{\frac{ab}{c}}=\frac{ac+bc}{ab}=\frac{c}{b}+\frac{c}{a}\)(1)

Tương tự: \(\frac{b+c}{2c-b}=\frac{a}{c}+\frac{a}{b}\)(2)

Cộng từng vế hai đẳng thức (1), (2) và áp dụng Cô - si, ta được: \(\frac{a+b}{2a-b}+\frac{b+c}{2c-b}\ge\frac{c}{b}+\frac{c}{a}+\frac{a}{c}+\frac{a}{b}\ge4\sqrt[4]{\frac{ca}{b^2}}\ge4\)

Đẳng thức xảy ra khi a = b = c

5 tháng 11 2019

a)Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :  \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}=\frac{2x-y}{6-4}=\frac{20}{2}=10\)

Từ \(\frac{x}{3}=10=>x=30\)

Từ \(\frac{y}{4}=10=>y=40\)

Từ \(\frac{z}{5}=10=>z=50\)

Vậy x=30,y=40,z=50

b)Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

\(=>\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}=>\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}=>a=b=c}}\)

Đpcm

5 tháng 11 2019

a)Theo tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{3}\)\(\frac{y}{4}\)\(\frac{z}{5}\)=\(\frac{2x-y}{\left(3\cdot2\right)-5}\)=\(\frac{20}{1}\)=20

-> \(\frac{x}{3}\)= 20 ->x=20*3=60

\(\frac{y}{4}\)=20->y=20*4=80

\(\frac{z}{5}\)=20->z=20*5=100

Vậy x=60, y=80, z=100.