tính giá trị của M
cho M=2016-2016:(999-x)
(với x thuộc N)
*N là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2xy+y-4x=6\)
\(\Rightarrow2xy+y-4x-6=0\)
\(\Rightarrow y\left(2x+1\right)-4x-2-4=0\)
\(\Rightarrow y\left(2x+1\right)-2\left(2x+1\right)-4=0\)
\(\Rightarrow\left(y-2\right)\left(2x+1\right)=4\)
Lập bảng , tìm các cặp (x;y) rồi thế vào M để tính
Để đạt giá trị nhỏ nhất thì đạt giá trị lớn nhất.
Vậy giá trị nhỏ nhất của M=1 khi x=2014.
Để \(2017-2016:\left(2015-x\right)\) đạt giá trị nhỏ nhất thì \(2016:\left(2015-x\right)\)đạt giá trị lớn nhất.--> 2015 - x đạt giá trị nhỏ nhất và khác 0 . Lý do 2015 - x phải khác 0 vì không có phép chia cho 0 nếu có thì phép chia đó là sai---- ---> 2015 - x = 1 ---> x=2014 Vậy giá trị nhỏ nhất của M khi x=2014.
a)Để \(A=2003-\frac{1003}{999-x}\) có giá trị nhỏ nhất
\(\Rightarrow\frac{1003}{999-x}\) có giá trị lớn nhất
\(\frac{1003}{999-x}\ge1003\)
Dấu "=" xảy ra khi
\(\frac{1003}{999-x}=1003\)
=> 999 - x = 1
x = 999-1
x = 998
=> giá trị nhỏ nhất của \(A=2003-\frac{1003}{999-998}=2003-1003=1000\) tại x = 998
b) Để \(A=2003-\frac{1003}{999+x}\) đạt giá trị nhỏ nhất
=> \(\frac{1003}{999+x}\) có giá trị lớn nhất
mà x là số tự nhiên
\(\Rightarrow\frac{1003}{999+x}\ge\frac{1003}{999}\)
Dấu "=" xảy ra khi
1003/(999+x) = 1003/999
=> 999 + x = 999
x = 0
=> giá trị nhỏ nhất của A = 2003 - 1003/999+0 = 2003 - 1003/999 = 2002 và 4/999 tại x = 0