1+1+1+1+1+1+1+1+1+1
tính nhanh nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{n}-\frac{1}{n+1}+\frac{1}{n+1}-\frac{1}{n+2}+...+\frac{1}{n+5}-\frac{1}{n+6}\)
\(A=\frac{1}{n}-\frac{1}{n+6}\)
\(A=\frac{6}{n\left(n+6\right)}\)
\(Q=\dfrac{1}{1+a}+\dfrac{1}{1+\dfrac{1}{a}}=\dfrac{1}{1+a}+\dfrac{a}{1+a}=\dfrac{1+a}{1+a}=1\)
1:
=>x+2xy=8y
=>x+2xy-8y=0
=>x(2y+1)-8y-4=-4
=>x(2y+1)-4(2y+1)=-4
=>(2y+1)(x-4)=-4
mà x,y là số nguyên
nên (x-4;2y+1) thuộc {(-4;1); (4;-1)}
=>(x,y) thuộc {(0;0); (8;-1)}
Có \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
\(\Leftrightarrow\left(x+\sqrt{x^2+1}\right)\left(x-\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=x-\sqrt{x^2+1}\)
\(\Leftrightarrow\left[x^2-\left(\sqrt{x^2+1}\right)^2\right]\left(y+\sqrt{y^2+1}\right)=x-\sqrt{x^2+1}\)
\(\Leftrightarrow-y-\sqrt{y^2+1}=x-\sqrt{x^2+1}\) (1)
Lại có:\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
\(\Leftrightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)\left(y-\sqrt{y^2+1}\right)=y-\sqrt{y^2+1}\)
\(\Leftrightarrow\left(x+\sqrt{x^2+1}\right)\left[y^2-\left(\sqrt{y^2+1}\right)^2\right]=y-\sqrt{y^2+1}\)
\(\Leftrightarrow-x-\sqrt{x^2+1}=y-\sqrt{y^2+1}\) (2)
Từ (1) và (2) cộng vế với vế có:
\(-\left(y+x\right)-\left(\sqrt{x^2+1}+\sqrt{y^2+1}\right)=x+y-\left(\sqrt{x^2+1}+\sqrt{y^2+1}\right)\)
\(\Leftrightarrow2\left(x+y\right)=0\)
\(\Leftrightarrow x+y=0\) hay S=0
Vậy...
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 1 x 10 = 100
tchs mình tchs lại
Tổng trên là :
\(1+1+1+1+1+1+1+1+1+1=1.10=10\)
Đáp số : 10