vẽ ΔABC vuông tại A, đường cao AH, chứng minh:
a)góc BAH= góc ACH
b) ΔABH∼ΔCAH
chúc các bạn giải vui vẻ∼❤
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác HAB và tam giác ABC , có :
A^ = H^ = 90o
B^ : góc chung
=> tam giác ABH ~ tam giác CBA ( g.g)
ADĐL pitago vào tam giác vuông ABC , có :
AB2 + AC2 = BC2
=> 62 + 82 = BC2
=> BC2 = 100
=> BC=10
Vì tam giác ABH ~ tam giác CBA ( cmt)
=> =
=> AH . BC = AB . AC
=> AH.10= 6.8
=> AH = 4,8
b)
Ta có :
A^1 + B^ = 90o
B^ + C^ = 90o
=> A^1 = C^
Xét tam giác HAC , và tam giác HAB , có :
A^1 = C^ ( cmt )
H^1 = H^2 = 90o
=> tam giác HAB ~ tam giác HCA ( g.g)
=> = => AH2 = HC . HB
1:
a: Xét ΔBAI và ΔBKI có
BA=BK
\(\widehat{ABI}=\widehat{KBI}\)
BI chung
Do đó: ΔBAI=ΔBKI
=>IA=IK
b: ΔBAI=ΔBKI
=>\(\widehat{BAI}=\widehat{BKI}=90^0\)
=>IK\(\perp\)BC
mà AH\(\perp\)BC
nên AH//KI
c: BA=BK
=>B nằm trên đường trung trực của AK(1)
IA=IK
=>I nằm trên đường trung trực của AK(2)
Từ (1) và (2) suy ra BI là đường trung trực của AK
d: BA=BK
=>ΔBAK cân tại B
=>\(\widehat{BAK}=\widehat{BKA}\)
\(\widehat{BAK}+\widehat{CAK}=\widehat{BAC}=90^0\)
\(\widehat{BKA}+\widehat{HAK}=90^0\)(ΔKAH vuông tại H)
mà \(\widehat{BAK}=\widehat{BKA}\)
nên \(\widehat{CAK}=\widehat{HAK}\)
=>AK là phân giác của góc HAC
2:
a: Ta có: \(\widehat{ANI}=\widehat{BNH}\)(hai góc đối đỉnh)
\(\widehat{BNH}+\widehat{HBN}=90^0\)(ΔHNB vuông tại H)
Do đó: \(\widehat{ANI}+\widehat{HBN}=90^0\)
mà \(\widehat{HBN}=\widehat{ABI}\)
nên \(\widehat{ANI}+\widehat{ABI}=90^0\)
mà \(\widehat{ABI}+\widehat{AIN}=90^0\)(ΔABI vuông tại A)
nên \(\widehat{ANI}=\widehat{AIN}\)
b: Xét ΔBAN và ΔBKN có
BA=BK
\(\widehat{ABN}=\widehat{KBN}\)
BN chung
Do đó; ΔBAN=ΔBKN
=>NA=NK
c: BI là trung trực của AK
=>BI\(\perp\)AK
Xét ΔBAK có
BI,AH là đường cao
BI cắt AH tại N
Do đó: N là trực tâm của ΔBAK
=>KN\(\perp\)AB
3:
Xét ΔCAE có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAE cân tại C
=>CA=CE
ΔCAE cân tại C
mà CB là đường cao
nên CB là phân giác của \(\widehat{ACE}\)
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}=90^0-37^0=53^0\)
b: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC=MB=BC/2
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\left(1\right)\)
\(\widehat{ACB}+\widehat{ABC}=90^0\)(ΔABC vuông tại A)
\(\widehat{HAB}+\widehat{ABH}=90^0\)(ΔABH vuông tại H)
Do đó: \(\widehat{ACB}=\widehat{HAB}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{MAC}=\widehat{HAB}\)
c: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>\(\widehat{AFE}=\widehat{AHE}\)
mà \(\widehat{AHE}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{AFE}=\widehat{ABC}\)
\(\widehat{AFE}+\widehat{MAC}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>FE vuông góc AM tại K
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)
Xét ΔHAB vuông tại H có HE là đường cao
nên \(HA^2=AE\cdot AB\)
=>\(AE\cdot6=4,8^2\)
=>\(AE=3,84\left(cm\right)\)
Xét ΔHAC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\)
=>\(AF=\dfrac{4.8^2}{8}=2,88\left(cm\right)\)
Xét ΔAEF vuông tại A có AK là đường cao
nên \(\dfrac{1}{AK^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)
=>\(\dfrac{1}{AK^2}=\dfrac{1}{2,88^2}+\dfrac{1}{3.84^2}\)
=>AK=2,304(cm)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: ta có: ΔABC\(\sim\)ΔHBA
nên BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
a.Xét tam giác ABC và tam giác HBA, có:
^B: chung
^BAC = ^BHA = 90 độ
Vậy tam giác ABC đồng dạng tam giác HBA (g.g)
b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)
\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)
c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)
(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)
\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)
Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)
a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
AH=AK(gt)
Do đó: ΔAHD=ΔAKD(cạnh huyền-cạnh góc vuông)
b) Vì △AHD=△AKD nên DH=DK
Mà AH=AK
Kết hợp 2 điều này lại suy ra AD là trung trực của HK
Ta có đpcm
b: Xét ΔABH vuông tại H và ΔCAH vuông tại H có
góc HAB=góc HCA
=>ΔABH đồng dạng vơi ΔCAH
a) Tam giác ABC vuông tại A có ^B+^C=90
Tam giác ABH vuông tại H có ^B+^BAH=90
=> ^BAH=^ACB
b)Xét tam giác ABH và Tam giác CAH có:
^AHB=^CAB
^BAH=^BCA(CM câu a)
=> tam giác ABH đồng dạng tam giác CAH