K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left|x-1\right|\ge0\forall x\in R\)

\(\left(x-3\right)^4\ge0\forall x\in R\)

\(\Rightarrow\left(x-3\right)^4+\left|x-1\right|>0\)

Vậy đa thức D(x) vô nghiệm

3 tháng 8 2016

\(\left(x-4\right)^2+\left(x+5\right)^2\)

Nếu đa thức trên có nghiệm là n

\(\Leftrightarrow\left(n-4\right)^2+\left(n+5\right)^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(n-4\right)^2=0\\\left(n+5\right)^2=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}n-4=0\\n+5=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}n=4\\n=-5\end{array}\right.\) vô lí 

Vậy đa thức trên không có nghiệm

3 tháng 8 2016

bạn ở dưới phải ghi ngoặc nhọn chứ

24 tháng 4 2023

\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm

Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x

=>Q(x) vô nghiệm

8 tháng 5 2022

\(\text{∆}'=3^2-2.2020\)

\(=-4031< 0\)

⇒ phương trình vô nghiệm

8 tháng 5 2022

Vì 2x^2-6x > 0 với mọi x

=> 2x^2-6x+2020 > 0+2020 với mọi x

=> 2x^2-6x+2020 > 2020 với mọi x

=> A(x) > 0 ( khác 0 )

=> A(x) vô nghiệm

7 tháng 5 2022

\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)

\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)

vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)

7 tháng 5 2022

thu gọn

\(P\left(x\right)=3x^4+x^3\left(-2x^2+x^2\right)+\dfrac{1}{4}x=3x^4+x^3-x^2+\dfrac{1}{4}x\)

\(Q\left(x\right)=x^4-4x^3+\left(3x^2-2x^2\right)-4=x^4-4x^3+x^2-4\)

30 tháng 6 2021

\(a.\)

\(f\left(x\right)=0\)

\(\Leftrightarrow2x-4=0\)

\(\Leftrightarrow x=2\)

\(b.\)

\(g\left(x\right)=2x-4+x^2-x+6\)

\(g\left(x\right)=x^2+x+2=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

PTVN 

31 tháng 3 2020

Ta có: M(x)=x4+2x2+1

1. Thay x=1 vào M(x) ta được: M(1)=1+2.1+1=4

Thay x=-1 vào M(x) ta được: M(-1)=(-1)2+2.(-1)2+1=4

2. Đặt t=x2 (t\(\ge\)0)

Ta được: M(t)=t2+2t+1=(t+1)2=0

\(\Leftrightarrow t=-1\) (KTM)

\(\Rightarrow\) M(x) vô nghiệm (dpcm)

Bạn tham khảo nha, không hiểu thì cứ hỏi mình nha

7 tháng 5 2018

Bài 1:

a)2x-6

Ta có:2x-6=0

2x=6

=>x=3

Vậy x=3 là nghiệm của đa thức a)

b)(6-x)(4-2x)

Ta có:(6-x)(4-2x)=0

Th1:6-x=0 =>x=6

Th2:4-2x=0

2x=4 =>x=2

Vậy x=2 và 6 là nghiệm của đa thức b)

c)x2+x

Ta có:x2+x=0

x(x+1)=0

TH1:x=0

TH2:x+1=0 =>x=-1

Vậy x=0 và -1 là nghiệm của đa thức c)

d)x2-81

Ta có:x2-81=0

x2=81

=>x=+_ 9

Vậy x=+_ 9 là nghiệm của đa thức d)

e)(2-x)(x2+1)

Ta có:(2-x)(x2+1)=0

TH1:2-x=0 =>x=2

TH2:x2+1=0

x2=-1 (loại)

Vậy x=2 là nghiệm đa thức e)

Bài 2:

P(x)=-2-3x2

Ta có:

-3x2≤0 với mọi x

=>-2-3x2<-2 với mọi x

Vậy đa thức P(x) vô nghiệm

Q(y)=y2+\(\dfrac{1}{4}\)y4+\(\dfrac{1}{4}\)

Ta có:

y2≥0 với mọi y

y4≥0 với mọi y

=>\(\dfrac{1}{4}\)y4≥0 với mọi y

=>y2+\(\dfrac{1}{4}\)y4≥0 với mọi y

=>y2+\(\dfrac{1}{4}\)y4+\(\dfrac{1}{4}\)\(\dfrac{1}{4}\)>0 với mọi y

Vậy đa thức Q(y) vô nghiệm

Cảm ơn bạn rất nhiềuhihihahahehehiha

3 tháng 4 2018

không thể chứng minh, nếu x-1 thì có thể làm ra 3 trường hợp

f(x)=x^2-6x+9+1=(x-3)^2+1>=1>0 với mọi x

=>F(x) vô nghiệm

NV
18 tháng 3 2023

\(f\left(x\right)=x^2-6x+9+1=\left(x-3\right)^2+1\)

Do \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\1>0\end{matrix}\right.\) ;\(\forall x\)

\(\Rightarrow\left(x-3\right)^2+1>0\) ;\(\forall x\)

\(\Rightarrow f\left(x\right)\) vô nghiệm