K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a^2+b^2+c^2=ab+bc+ac

=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0

=>a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2=0

=>(a-b)^2+(b-c)^2+(a-c)^2=0

=>a=b=c

\(T=\dfrac{a^{2022}+a^{2022}+a^{2022}}{\left(3a\right)^{2022}}=\dfrac{3}{3^{2022}}=\dfrac{1}{3^{2021}}\)

21 tháng 12 2017

Tớ ko bt

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

6 tháng 8 2020

Đặt \(a=\frac{1}{x}\)\(b=\frac{1}{y}\)\(c=\frac{1}{z}\) ta có: \(xy+yz+zx=1\)

Ta thấy \(x+y+z\ge\sqrt{3.\left(xy+yz+zx\right)}=\sqrt{3}\)

Áp dụng BĐT Cauchy- Schwarz ta có:

\(\frac{x}{yz+1}+\frac{y}{zx+1}+\frac{z}{xy+1}\ge\frac{\left(x+y+z\right)^2}{3xyz+x+y+z}=\frac{\left(x+y+z\right)^3}{3xyz.\left(x+y+z\right)+\left(x+y+z\right)^2}\)

                                                         \(\ge\frac{\left(x+y+z\right)^3}{\left(xy+yz+zx\right)^2+\left(x+y+z\right)^2}=\frac{\left(x+y+z\right)^3}{1+\left(x+y+z\right)^2}\)

\(=\frac{\left(x+y+z-\sqrt{3}\right).\left[4.\left(x+y+z\right)^2+\sqrt{3}\left(x+y+z\right)^2+3\right]}{4.\left[1+\left(x+y+z\right)^2\right]}+\frac{3\sqrt{3}}{4}\)           

\(\ge\frac{3\sqrt{3}}{4}\)                                             

Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=\sqrt{3}\)hay \(a=b=c=\sqrt{3}\)

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

9 tháng 12 2018

\(\hept{\begin{cases}\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab.\left(b+c\right)=\left(a+b\right).bc\Rightarrow abb+abc=abc+bbc\Rightarrow a=c\\\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\left(c+a\right).bc=\left(b+c\right).ca\Rightarrow bcc+abc=abc+cca\Rightarrow a=b\end{cases}\Rightarrow a=b=c}\)

\(M=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

p/s: bài này có nhiều cách lắm, cách này ko đc thì thử làm cách khác =))

9 tháng 12 2018

\(\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab\left(b+c\right)=\left(a+b\right)bc\)

\(\Rightarrow ab^2+abc=abc+b^2c\Rightarrow ab^2=b^2c\Rightarrow a=c\) (1)

\(\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow bc\left(c+a\right)=\left(b+c\right)ca\)

\(\Rightarrow bc^2+bca=bca+c^2a\Rightarrow bc^2=c^2a\Rightarrow b=a\)(2)

Từ (1) và (2) được a = b = c

Khi đó:

\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)