K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2016

a) Ta có: \(A=\frac{n-5}{n+1}=\frac{n+1-6}{n+1}=\frac{n+1}{n+1}-\frac{6}{n+1}=1-\frac{6}{n+1}\)

Để \(A\in Z\Rightarrow1-\frac{6}{n+1}\in Z\Rightarrow\frac{6}{n+1}\in Z\)

Ta có bảng sau:  

   n + 1

   -6

  -3

  -2

  -1

  1

  2

  3

    6

    n

   -7

  -4

  -3

  -2

  0

  1

  2

   5

b) Gọi d là ước chung nguyên tố của cả tử và mẫu ta có: 

n - 5 và n + 1 đều chia hết cho d  => (n - 5) - (n + 1) = n - 5 - n - 1 = -6 chia hết cho d

=> d = 2 hoặc d = 3

TH1: d = 2 thì n - 5 chia hết cho 2  => n - 1 chia hết cho 2 => n - 1 = 2k  => n = 2k + 1

TH2: d = 3 thì n - 5 chia hết cho 3  => n - 2 chia hết cho 3 => n - 2 = 3k  => n = 3k + 2

Vậy để A tối giản thì \(n\ne2k+1;n\ne3k+2\)   

25 tháng 8 2016

cảm ơn bạn

a) Để A có giá trị nguyên thì \(n-5⋮n+1\)

\(\Leftrightarrow n+1-6⋮n+1\)

mà \(n+1⋮n+1\)

nên \(-6⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(-6\right)\)

\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

b)

Ta có: \(A=\dfrac{n-5}{n+1}\)

\(=\dfrac{n+1-6}{n+1}\)

\(=1-\dfrac{6}{n+1}\)

Để A là phân số tối giản thì ƯCLN(n-5;n+1)=1

\(\LeftrightarrowƯCLN\left(6;n+1\right)=1\)

\(\Leftrightarrow n+1⋮̸6\)

\(\Leftrightarrow n+1\ne6k\left(k\in N\right)\)

\(\Leftrightarrow n\ne6k-1\left(k\in N\right)\)

Vậy: Khi \(n\ne6k-1\left(k\in N\right)\) thì A là phân số tối giản

23 tháng 2 2022

Ai giúp mình nhanh với nha

a: Để A là phân số thì n+5<>0

hay n<>-5

b: Để A=-1/2 thì n-1/n+5=-1/2

=>2n-2=-n-5

=>3n=-3

hay n=-1

c: Để A là số nguyên thì \(n-1⋮n+5\)

\(\Leftrightarrow n+5\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{-4;-6;-3;-7;-2;-8;1;-11\right\}\)

a: Để A là số tự nhiên thì 8n+6+187 chia hết cho 4n+3

=>\(4n+3\in\left\{1;-1;11;-11;17;-17;187;-187\right\}\)

mà n>0

nên \(n\in\left\{2;46\right\}\)

c: \(A=\dfrac{8n+6+187}{4n+3}=2+\dfrac{187}{4n+3}\)

Để A rút gọn được thì ƯCLN(8n+193;4n+3)<>1

mà 150<=n<=170

nên \(n\in\left\{156;165;167\right\}\)

11 tháng 5 2022

a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-31-12-24-4
n42517-1

 

11 tháng 5 2022

a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)

\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)

\(A=\dfrac{n+1}{n-3}\)

\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)

\(A=1+\dfrac{4}{n-3}\)

Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-3=1 --> n=4

n-3=-1 --> n=2

n-3=2 --> n=5

n-3=-2 --> n=1

n-3=4 --> n=7

n-3=-4 --> n=-1

Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên

b.hemm bt lèm:vv

22 tháng 1

a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2

=> (n - 2) + 3 ⋮ n - 2

 Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2

=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}

 => n ∈ {-1;1;3;5}

b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1

=> (4n - 2) + 7 ⋮ 2n - 1

=> 2(2n - 1) + 7 ⋮ 2n - 1

 Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1

=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}

=> n ∈ {-3;0;1;4}

9 tháng 3 2021

a) \(A=\frac{8n+193}{4n+3}=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)

Để \(A\inℕ\Rightarrow187⋮4n+3\Rightarrow4n+3\in\left\{17;11;187\right\}\)

\(4n+3=11\Leftrightarrow n=2\)

\(4n+3=187\Leftrightarrow n=46\)

\(4n+3=17\Leftrightarrow4n=14\) ( không tồn tại \(n\inℕ\))

Vậy n=2, 46

b) A tối giản khi 187 và 4n+3 có ƯCLN =1

\(\Rightarrow n\ne11k+2\left(k\inℕ\right)\)

\(n\ne17m+12\left(m\inℕ\right)\)

c) \(n=156\Rightarrow A=\frac{17}{19}\)

\(n=165\Rightarrow A=\frac{89}{39}\)

\(n=167\Rightarrow A=\frac{139}{61}\)

21 tháng 3 2021

Làm thế này mới đúng

8 tháng 5 2021
A. B C Nhé chứ ko liền nhau

a) Để A là số nguyên thì \(n+2⋮n+1\)

\(\Leftrightarrow n+1+1⋮n+1\)

mà \(n+1⋮n+1\)

nên \(1⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(1\right)\)

\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)

hay \(n\in\left\{0;-2\right\}\)(thỏa ĐK)

Vậy: \(n\in\left\{0;-2\right\}\)

b) Gọi d\(\in\)ƯC(n+2;n+1)

\(\Leftrightarrow\left\{{}\begin{matrix}n+2⋮d\\n+1⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(n+2;n+1\right)=1\)

hay A là phân số tối giản(Đpcm)

8 tháng 4 2021

thanks nha  ok

17 tháng 5 2021

`a)A in ZZ`

`=>n+1 vdots n-3`

`=>n-3+4 vdots n-3`

`=>4 vdots n-3`

`=>n-3 in Ư(4)={+-1,+-2,+-4}`

`=>n in {2,4,5,1,-1,7}`

Vậy `n in {2,4,5,1,-1,7}` thì `A in ZZ`

b) để A là phân số thì A `cancel{in} Z`

`=>n ne {2,4,5,1,-1,7}`

Vậy `n ne {2,4,5,1,-1,7}` thì A là phân số

a)Để A là số nguyên thì n+1 ⋮ n-3

⇒n+1 ⋮ n−3

⇒n−3+4 ⋮ n−3

⇒4 ⋮ n−3

⇒n-3 ∈ Ư(4)={±1,±2,±4}

⇒n ∈ {2,4,5,1,−1,7}

Vậy n ∈ {2,4,5,1,−1,7} thì A ∈ Z

b) Để A là phân số thì A ∈ Z

⇒n ≠ {2,4,5,1,−1,7}

Vậy n ≠ {2,4,5,1,−1,7} thì A là phân số

Chúc bạn học tốt!