cho tam giác ABC có A=2B, B=2C. tính góc C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\hept{\begin{cases}A=2B\\2C=3B\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{A}{2}=\frac{B}{1}\\\frac{C}{3}=\frac{B}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{A}{4}=\frac{B}{2}\\\frac{C}{3}=\frac{B}{2}\end{cases}\Leftrightarrow}\frac{A}{4}=\frac{B}{2}=\frac{C}{3}}\)
Áp dụng TC của dãy tỉ số bằng nhau , ta có :
\(\frac{A}{4}=\frac{B}{2}=\frac{C}{3}=\frac{A+B+C}{4+2+3}=\frac{180}{9}=20\)
\(\Rightarrow\hept{\begin{cases}A=20.4=80^o\\B=20.2=40^o\\C=20.3=60^o\end{cases}}\)
Ta có tổng 3 góc của 1 tam giác là 180 độ
Vì a=2b và b=2c nên c=36 độ
b=72 độ
a=72 độ
nên 1/a+1/b=1/c
Xét t/g ABC có:
A+B+C=180 độ (định lý) => 2B+B+C=180 độ (vì A=2B)
=> 3B+C=180 độ
=> 6C+C=180 độ (vì B=2C) => 7C=180 độ =>C=180:7=25.(714285)
=> Góc C không bằng 14 độ V....... HỌC TỐT (cho mik 1 K nha)
a) Trong tam giác ABC có góc A + góc B + góc C = 180 độ
\(\Rightarrow\) góc B + góc C = 180 độ - 100 độ = 80 độ
Góc B = (80 + 50) : 2 = 65 (độ)
Góc C = 80 - 65 = 15 (độ)
b) Trong tam giác ABC có góc A + góc B + góc C = 180 độ
\(\Rightarrow\) góc B + góc C = 180 độ - 75 độ = 105 (độ)
Cách 1
Góc B = 105 : (1 + 2) . 2 = 70 (độ)
Góc C = 105 - 70 = 35 (độ)
Cách 2
Gọi số đo góc B, góc C lần lượt là x,y
\(x=2y\Rightarrow\frac{x}{2}=\frac{y}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{y}{1}=\frac{x+y}{2+1}=\frac{105}{3}=35\)
\(\Rightarrow\) x = 35.2 = 70; y = 35.1 = 35
Vậy số đo góc B, góc C lần lượt là 70 độ; 35 độ
Bài này chắc không cần vẽ hình đâu
2B = 2C \(\Rightarrow\)\(\widehat{B}=\widehat{C}\)
xét \(\Delta ABC\)có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)( theo định lí tổng 3 góc của 1 tam giác )
hay \(2\widehat{B}+\widehat{B}+\widehat{B}=180^o\)
\(\Rightarrow4\widehat{B}=180^o\)
\(\Rightarrow\widehat{B}=45^o\)
Từ đó ta tính được : \(\widehat{A}=2.45^o=90^o\)
Vậy \(\Delta ABC\)vuông tại A
Giả thiết tương đương:
\(a^4+b^4+c^4+2b^2c^2=2a^2\left(b^2+c^2\right)+2b^2c^2\)
\(\Leftrightarrow a^4+\left(b^2+c^2\right)^2=2a^2\left(b^2+c^2\right)+2b^2c^2\)
\(\Leftrightarrow\left(b^2+c^2-a^2\right)^2=2b^2c^2\)
\(\Leftrightarrow b^2+c^2-a^2=\pm\sqrt{2}bc\)
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\pm\sqrt{2}bc}{2bc}=\pm\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}A=45^0\\A=135^0\end{matrix}\right.\)