cho x+y=2.CMR: x^2y^2(x^2+y^2)=<2
giup minh di moi nguoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=4x^2+4x+1\\ b,=9-12y+4y^2\\ c,=\dfrac{x^2}{4}-xy+y^2\\ d,=\dfrac{25}{4}-5x+x^2\\ e,=4x^2+32xy+64y^2\\ f,=9x^2-30xy+25y^2\)
a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\)
\(\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)
\(\Rightarrow xy=5k.7k\)
\(\Rightarrow140=35k^2\)
\(\Rightarrow k^2=4\)
\(\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
Với k = 2 ta có :
+) \(\frac{x}{5}=2\Rightarrow x=10\)
+) \(\frac{y}{7}=2\Rightarrow y=14\)
Với k = -2 ta có :
+) \(\frac{x}{5}=-2\Rightarrow x=-10\)
+) \(\frac{y}{7}=-2\Rightarrow y=-14\)
Vậy \(\left(x;y\right)=\left\{\left(10;14\right);\left(-10;-14\right)\right\}\)
b) Ta có :
\(x:y:z\)\(=\)\(2:5:7\)\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\)\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)
+) \(\frac{x}{2}=3\Rightarrow x=6\)
+) \(\frac{y}{5}=3\Rightarrow y=15\)
+) \(\frac{z}{7}=3\Rightarrow z=21\)
Vậy x = 6, y = 15 và z = 21
_Chúc bạn học tốt_
a, x.y/5.7=140/35
=140/35=4
x/5=4/7
x/7=5/4
x.7=5.4
x.7=20
x=20;7
x=20/7
b,chịu
tk thì tk ko tk cx đc
\(\left(-x^2y\right)^3\cdot\dfrac{1}{2}\cdot x^2y^3\cdot\left(-2xy^2z\right)^2\\ =-x^6y^3\cdot\dfrac{1}{2}x^2y^3\cdot4x^2y^4z^2\\ =\left(-1\cdot\dfrac{1}{2}\cdot4\right)\cdot\left(x^6\cdot x^2\cdot x^2\right)\cdot\left(y^3\cdot y^3\cdot y^4\right)\cdot z^2\\ =-2x^{10}y^{10}z^2\)
Thay x = 1+ √2 ; y = 1 - √2 vào VT = 6 >2
Vậy có trời mới chứng minh được nó luôn <= 2