m, \(\frac{x+2}{5}=\frac{2-3x}{3}\)
Làm giúp tui với ạ đang kẹt
Cảm ơn nhiều:)))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{9}{x.x^2-9.x}+\frac{1}{x+_{ }3}\right):\left(\frac{x-3}{x.3+x^2}-\frac{x}{3.x+9}\right)\) đk (x\(\ne\)o; công trừ 3)
<=>\(9+\frac{x.\left(x-3\right)}{x.\left(x^2-9\right)}\):\(\frac{3.\left(x-3\right)-x^2}{3x.\left(x+3\right)}\)
<=>\(-\frac{3}{x-3}=\frac{3}{3-x}\)
Bạn ơi mk k hiểu sao lại ra bước 2 ... bạn giải chi tiết giùm mk nha
dù sao cx cảm ơn bạn đã giúp mk
Điều kiện \(\hept{\begin{cases}x\ne0\\3x^2-x-4\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne\frac{4}{3}\end{cases}}}\)
Đặt \(\frac{3x^2-x-4}{x}=a\)thì ta có
\(PT\Leftrightarrow a+\frac{9}{a}=6\)
\(\Leftrightarrow a^2-6a+9=0\)
\(\Leftrightarrow\left(a-3\right)^2=0\)
\(\Leftrightarrow a=3\)
\(\Leftrightarrow\frac{3x^2-x-4}{x}=3\)
\(\Leftrightarrow3x^2-4x-4=0\)
\(\Leftrightarrow\left(3x^2-6x\right)+\left(2x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}\)
Đề sai r kìa ... Sửa lại theo ý mình nhé !
Hệ \(\hept{\begin{cases}\frac{3x}{\sqrt{3x+2}}-\frac{x}{y-3}=5\\\frac{2x}{\sqrt{3x+2}}+\frac{3x}{y-3}=7\end{cases}}\)(chỗ này cx có thể sửa thành 3x-2)
\(ĐKXĐ:\hept{\begin{cases}x>-\frac{2}{3}\\y\ne3\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{x}{\sqrt{3x+2}}=a\\\frac{x}{y-3}=b\end{cases}}\)
Hệ đã cho tương đương với hệ sau
\(\hept{\begin{cases}3a-b=5\\2a+3b=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}9a-3b=15\\2a+3b=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}11a=22\\2a+3b=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2\\2a+3b=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{\sqrt{3x+2}}=2\left(1\right)\\\frac{x}{y-3}=1\left(2\right)\end{cases}}\)
Giải (1) ta đc :
\(\left(1\right)\Leftrightarrow x=2\sqrt{3x+2}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\left(DoVP>0\forall x>-\frac{2}{3}\right)\\x^2=4\left(3x+2\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x^2-12x=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x^2-12x+36=44\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\\left(x-6\right)^2=44\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x=\pm2\sqrt{11}+6\end{cases}}\)
\(\Leftrightarrow x=6+2\sqrt{11}\)
Thay vào (2) sẽ tìm đc y
P/S: Số xấu quá nên tớ chỉ làm đến đây thôi -,-
a: =>4/3x=7/9-4/9=1/3
=>x=1/4
b: =>5/2-x=9/14:(-4/7)=-9/8
=>x=5/2+9/8=29/8
c: =>3x+3/4=8/3
=>3x=23/12
hay x=23/36
d: =>-5/6-x=7/12-4/12=3/12=1/4
=>x=-5/6-1/4=-10/12-3/12=-13/12
\(\frac{12x^2+30x-21}{16x^2-9}-\frac{3x-7}{3-4x}=\frac{6x+5}{4x+3}\)
ĐKXĐ: \(x\ne\pm\frac{3}{4}\)
\(< =>\frac{12x^2+30x-21}{\left(4x-3\right)\left(4x+3\right)}+\frac{3x-7}{4x-3}=\frac{6x+5}{4x+3}\)
\(=>12x^2+30x-21+\left(3x-7\right)\left(4x+3\right)=\left(6x+5\right)\left(4x-3\right)\)
\(< =>12x^2+30x-21+12x^2-19x-21=24x^2+2x-15\)
\(< =>24x^2+11x-42=24x^2+2x-15\)
\(< =>24x^2+11x-42-24x^2-2x+15=0\)
\(< =>9x-27=0\)
\(< =>x=3\left(TM\right)\)
Tập nghiệm phương trình \(S=\left\{3\right\}\)
\(\frac{12x^2+30x-21}{\left(4x-3\right)\left(4x+3\right)}\)-\(\frac{3x-7}{3-4x}\)=\(\frac{6x+5}{4x+3}\)
\(\frac{12x^2+30x-21}{\left(4x-3\right)\left(4x+3\right)}\)+\(\frac{\left(3x-7\right)\left(4x+3\right)}{\left(4x-3\right)\left(4x+3\right)}\)=\(\frac{\left(6x+5\right)\left(4x-3\right)}{\left(4x-3\right)\left(4x+3\right)}\)
12x2+30x-21+12x2-28x+9x-21=24x2+20x-18x-15
12x2+12x2-24x2+30x-28x+9x-20x+18x=21+21-15
-9x =27
x =\(\frac{27}{-9}\)
x =-3
Ta có : \(\left|x+\frac{13}{14}\right|=-\left|x-\frac{3}{7}\right|\)
\(\Rightarrow\left|x+\frac{13}{14}\right|+\left|x-\frac{3}{7}\right|=0\)
Mà : \(\left|x+\frac{13}{14}\right|\ge0\forall x\)
\(\left|x-\frac{3}{7}\right|\ge0\forall x\)
Nên : \(\orbr{\begin{cases}\left|x+\frac{13}{14}\right|=0\\\left|x-\frac{3}{7}\right|=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{13}{14}=0\\x-\frac{3}{7}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{14}\\x=\frac{3}{7}\end{cases}}\)
`Answer:`
\(\frac{x+2}{5}=\frac{2-3x}{3}\)
\(\Leftrightarrow\frac{3.\left(x+2\right)}{5}=\frac{5.\left(2-3x\right)}{3}\)
\(\Rightarrow3.\left(x+2\right)=5.\left(2-3x\right)\)
\(\Leftrightarrow3x+6=10-15x\)
\(\Leftrightarrow3x+15x=10-6\)
\(\Leftrightarrow18x=4\)
\(\Leftrightarrow x=\frac{2}{9}\)
\(\frac{x+2}{5}=\frac{2-3x}{3}\)
\(\Rightarrow3\times\left(x+2\right)=5\times\left(2-3x\right)\)
\(\Rightarrow3x+6=10-15x\)
\(\Rightarrow3x+15x=-6+10\)
\(\Rightarrow18x=4\)
\(\Rightarrow x=4\div18=\frac{2}{9}\)