Giúp mình với :
So sánh 3344 và 4433
Thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,33^{44}=11^{44}\cdot3^{44}=11^{44}\cdot81^{11}>11^{33}\cdot64^{11}=11^{33}\cdot4^{33}=44^{33}>44^{32}\)
\(b,A=2000^{2016}\left(2000-1\right)+1999=1999\cdot2000^{2016}+1999⋮1999\)
`99^{20}=(99^{2})^{10}=(99.99)^{10}`
`9999^{10}=(99.101)^{10}`
Vì `(99.99)^{10}<(99.101)^{10}`
`->99^{20}<9999^{10}`
Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{10}\)
mà 9801<9999
nên \(99^{20}< 9999^{10}\)
548 và 1132
=> 532 + 16 và 1132
=> 532 x 516 và 1132
=> 516 và 632
Biết 5 < 6 nên 548 < 1132
2023²⁰²³ - 2023²⁰²² = 2023²⁰²².(2023 - 1) = 2023²⁰²².2022
2023²⁰²² - 2022²⁰²¹ = 2023²⁰²¹.(2023 - 1) = 2023²⁰²¹.2022
Do 2022 > 2021 ⇒ 2023²⁰²² > 2023²⁰²¹
⇒ 2023²⁰²².2022 > 2023²⁰²¹.2022
Vậy 2023²⁰²³ - 2023²⁰²² > 2023²⁰²² - 2023²⁰²¹
\(2^{30}< 2^{300}< 3^{200}\)
\(\Rightarrow2^{30}< 3^{200}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}=9^{30}\cdot9^{70}\)
Vì \(9>2\) nên \(9^{30}>2^{30}\) hay \(9^{30}\cdot9^{70}>2^{30}\)
Từ đó \(9^{100}>2^{30}\) hay \(2^{30}< 3^{200}\)
Ví dụ như: big(to) , small(nhỏ) , tall(cao) .
happy(vui vẻ) , easy(dễ) ...
Ta có 33^44=(33^4)^11=1185921^11
44^33=(44^3)^11=85184^11
Vì 1185921^11>85184^11 nên 33^44>44^33
3344 = 113.44 = 11132
4433= 114.33 = 11132
vậy 3344 = 4433