tìm x thuộc Q biết rằng x là số âm lớn nhất được viết bằng ba cs 1
bài 2: cho a,b thuộc Z , b>0 .So sash hai số hưpx tỉ a/b và a+2001/b+2001
bài 3: so sánh a/b (b>0) và a+n/b+n (n thuộc N*)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm câu a
\(Để\frac{a}{b}< \frac{a+c}{b+d}\) thì a(b+d) < b(a+c) ↔ ab + ad , ab + bc ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)
\(Để\frac{a+c}{b+d}< \frac{c}{d}\) thì (a+c).d < (b+d).c ↔ ad + cd < bc + cd ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)
Bài 1 : Xét tích : \(a(b+2001)=ab+2001a\)
\(b(a+2001)=ab+2001b\)
Vì b > 0 nên b + 2001 > 0.
Trường hợp 1 : Nếu \(a>b\)thì \(ab+2001a>ab+2001b\)
\(\Leftrightarrow a(b+2001)>b(a+2001)\)
\(\Leftrightarrow\frac{a}{b}>\frac{a+2001}{b+2001}\)
Xét tiếp \(a(b+2001)=ab+2001a\)
\(b(a+2001)=ab+2001b\)
Vì b < 0 nên b + 2001 < 0
Nếu a < b thì \(ab+2001a< ab+2001b\)
\(\Leftrightarrow a(b+2001)< b(a+2001)\)
\(\Leftrightarrow\frac{a}{b}< \frac{a+2001}{b+2001}\)
Nếu a = b thì rõ ràng \(\frac{a}{b}=\frac{a+2001}{b+2001}\)
Bài 2 : Tham khảo :
Câu hỏi của trần nguyễn khánh nam - Toán lớp 7 | Học trực tuyến
Bài 3 :
a, Ta có : \(\frac{13}{38}>\frac{13}{39}=\frac{1}{3}=\frac{29}{87}>\frac{29}{88}\)
\(\Rightarrow\frac{-13}{38}< \frac{29}{-88}\)
b, Ta có : \(\frac{267}{-268}< 1< \frac{1347}{1343}\)
\(\Leftrightarrow\frac{267}{-268}< \frac{-1347}{1343}\)
(+) Th1 : a = b
=> \(\frac{a}{b}=1\) và \(\frac{a+n}{b+n}=1\)
=> \(\frac{a}{b}=\frac{a+n}{b+n}\)
(+) th2 : a < b
\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)
\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)
Vì a < b và n thuộc N* => an < bn => ab + an < ab + bn => \(\frac{ab+an}{b\left(b+n\right)}
Ta có: a/b<a+n/b+n <=> a(b+n)<b(a+n)
<=> a.b+a.n<b.a+b.n
<=> a.n<b.n
<=> a<b =>a/b<a+n/b+n <=> a<b
Tương tự: a/b>a+n/b+n <=> a>b
a, Để x là số nguyên
=> a - 5 chia hét cho a
Vì a chia hết cho a
=> -5 chia hết cho a
=> a \(\in\){1; -1; 5; -5}
\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)
\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+bn}{b\left(b+n\right)}\)
TH1: a = b
=> an = bn
=> ab+an = ab+bn
=> \(\frac{a}{b}=\frac{a+n}{b+n}\)
TH2: a > b
=> an > bn
=> ab + an > ab + bn
=> \(\frac{a}{b}>\frac{a+n}{b+n}\)
TH3: a < b
=> an < bn
=> ab + an < ab + bn
=> \(\frac{a}{b}
a) Số hữu tỉ là số được viết dưới dạng \(\frac{a}{b}\)
d) \(\frac{2}{7}=\frac{18}{63}\) ; \(\frac{4}{9}=\frac{28}{63}\) Vì 18 < 28 mà 63 = 63
=> \(\frac{2}{7}< \frac{4}{9}\)
\(\frac{-17}{25}=\frac{-476}{700}\) ; \(\frac{-14}{28}=\frac{-350}{700}\) Vì -476 < -350 mà 700=700
=> \(\frac{-17}{25}< \frac{-14}{28}\)
theo minh thi
neu a<b thi ta co a(b+n) va b(a+n)
ab+an và ab + bn
vi a<b nen a(b+n)<b(a+n) suy ra a/b < a+n/b+n
neu a>b thi ta co a(b+n) va b(a+n)
ab+an va ab+bn
vì a>b nen a(b+n)>b(a+n) suy ra a/b>a+n/b+n
neu a=b thi a(b+n) và b(a+n)
ab+an và ab+ bn
vì a=b nên a(b+n) = b(a+n) suy ra a/b=a+n/b+n
Câu 1: Tại đây có bài y chang bạn bấm vào sẽ thấy nhá!
Câu hỏi của trần nguyễn khánh nam - Toán lớp 7 | Học trực tuyến
Câu 2: Giải
- Số âm lớn nhất được viết bằng ba chữ số 1 là số đối của số dương bé nhất được viết bằng ba chữ số 1
- Số dương đó là \(\frac{1}{11}\)
Số đó là - \(\frac{1}{11}\)
Câu 5
Ta có : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a(b+n)< b(a+n)\)
\(\Leftrightarrow ab+an< ab+bn\Leftrightarrow a< b\)vì n > 0
Như vậy : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a< b\)
Ta lại có : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a(b+n)>b(a+n)\)
\(\Leftrightarrow ab+an>ab+bn\Leftrightarrow an>bn\Leftrightarrow a>b\)
Như vậy : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a>b\)