K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{BAM}\) chung

AM=AN

Do đó: ΔABM=ΔACN

Suy ra: BM=CN

b: Xét ΔNBC và ΔMCB có 

NB=MC

BC chung

NC=MB

Do đó: ΔNBC=ΔMCB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

=>ΔIBC cân tại I

=>IB=IC

mà AB=AC

nên AI là đường trung trực của BC

=>H là trung điểm của BC

21 tháng 9 2023

Tham khảo:

a) Vì tam giác ABC cân tại A theo giả thiết. BM và CN là 2 đường trung tuyến nên M, N là 2 trung điểm của AC, AB.

Vì AB = AC (tính chất tam giác cân)

\( \Rightarrow \dfrac{{AB}}{2} = \dfrac{{AC}}{2} = AN = AM\)

Xét tam giác AMB và tam giác ANC ta có :

AM = AN (cmt)

AB = AC

Góc A chung

\( \Rightarrow \Delta AMB =\Delta ANC\)

\( \Rightarrow BM = CN\) ( 2 cạnh tương ứng )

b) Vì BM và CN là các đường trung tuyến

Mà I là giao điểm của BM và CN

\( \Rightarrow \) I là trọng tâm của tam giác ABC

\( \Rightarrow \) AI là đường trung tuyến của tam giác ABC hay AH đường là trung tuyến của tam giác ABC

\( \Rightarrow \) H là trung điểm của BC

8 tháng 5 2022

a. vì tam giác ABC cân tại A

=> AB = AC 

=> góc ABC = góc ACB

    BM và CN là 2 đường trung tuyến của tam giác ABC

=> N và M lần lượt là trung điểm của AB và AC

=> AN = BN

     AM = CM

mà AB = AC

=> AN = BN = AM = CM

  Xét tam giác BNC và tam giác CMB:

  BC chung

  góc ABC = góc ACB (cmt)

  BN = CM (cmt)

=>  tam giác BNC = tam giác CMB (c-g-c) (đpcm)

b. tam giác BNC = tam giác CMB (cmt)

=> BM = CN ( 2 cạnh tương ứng)

mà BM giao CN tại K

=> K là trọng tâm của tam giác ABC

=> BK = CK

   Xét Δ AKB và Δ AKC:

 AK chung

 AB = AC (cmt)

 BK = CK (cmt)

=> Δ AKB = Δ AKC (c-c-c)

=> góc BAK = góc CAK (2 góc tương ứng)

=> AK là tia phân giác góc BAC

=> AK là đường trung trực của Δ ABC

=> AK ⊥ BC (đpcm)

c. Vì AK (AH) ⊥ BC

 => tam giác ABH vuông tại H

mà AH là đường trung trực của tam giác ABC

=> BH = CH = \(\dfrac{BC}{2}=\dfrac{6}{2}=3cm\)

Áp dùng định lí Py - ta - go vào tam giác ABH:

 AB2 = BH2 + AH2

 52    =  32   + AH2

AH2  =  52 - 32 = 25 - 9 = 16

=> AK = 4cm (AH > 0) 

8 tháng 5 2022

giúp vs chứ mai thi r !!!

 

a: Xét ΔABM và ΔACN co

góc ABM=góc ACN

AB=AC
góc BAM chung

=>ΔABM=ΔACN

=>BM=CN

b: Xét ΔIBC có góc IBC=góc ICB

nên ΔIBC cân tại I

=>IB=IC

mà AB=AC

nên AI là trung trực của BC

=>AI vuông góc BC

=>AI vuông góc MN tại K

=>K là trung điểm của MN

6 tháng 10 2021

\(a,\left\{{}\begin{matrix}AN=NB\\AM=MC\end{matrix}\right.\Rightarrow MN\) là đtb tam giác ABC

\(\Rightarrow MN//BC\Rightarrow BNMC\) là hình thang

\(b,\) G là giao điểm 2 trung tuyến tam giác ABC nên là trọng tâm tam giác ABC

Mà AI cũng là trung tuyến tam giác ABC nên \(G\in AI\) hay A,I,G thẳng hàng

\(c,\left\{{}\begin{matrix}AM=MC\\BI=IC\end{matrix}\right.\Rightarrow MI\) là đtb tam giác ABC \(\Rightarrow MI=\dfrac{1}{2}AB\Rightarrow2AB=MI\)

\(d,\left\{{}\begin{matrix}BH=HG\\CK=KG\end{matrix}\right.\Rightarrow HK\) là đtb tam giác BGC

\(\Rightarrow HK=\dfrac{1}{2}BC=MN\) ( MN là đtb tam giác ABC)

ΔPKN đồng dạng với ΔPMA

=>góc PKN=góc PMH

=>AKNM nội tiếp

mà góc ANH=góc AMH=90 độ

nên ANHM nội tiếp đường tròn đường kính AH

=>góc AKH=góc ANH

=>AK vuông góc KH

Kẻ đường kính AI' của (O)

=>I'K vuông góc AK

=>K,H,I' thẳng hàng

AC vuông góc CI'; AB vuông góc BI'

=>CI'//BH và BI'//CH

=>BHCI' là hình bình hành

=>K,H,I thẳng hàng

15 tháng 7 2023

a) Xét △ABM vuông tại A và △DBM vuông tại D có:

BM chung

AB=DB=3cm(gt)

=> △ABM=△DBM (cạnh huyền-cạnh góc vuông) => AM=DM(2 cạnh t/ứ)

b) Xét △AMN và △DMC có:

AMN=DMC(2 góc đối đỉnh)

AM=DM(cmt)

MAN=MDC(gt)

=> △AMN=△DMC(g.c.g) => MN=MC(2 cạnh tướng ứng) => △MCN cân tại M

c) Vì △AMN=△DMC(cmt) => AN=DC(2 cạnh tương ứng)

Ta có AB=BD;AN=DC;BN=AN+AB;BC=BD+DC => BN=BC=> △BNC cân tại B

Vì △ABM=△DBM(cmt)=> ABM=DBM=> NBK=CBK (A thuộc BN; D thuộc BC;M thuộc BK) => BK là phân giác NBC

=> Trong △BNC cân tại B, BK là đường phân giác, đường trung trực, đường trung tuyến, đường cao,... (t/c) => BK là đường trung trực của CN

d) Áp dụng định lý Pytago vào △ABC vuông tại A có: AB2+AC2=BC^2

=> 9+16=25=BC^2 (cm) => BC = 5 cm

Ta có BD+DC=BC;BD=3cm=> DC=2cm

Ta có AN=DC(cmt) => AN=2cm

Áp dụng định lý Pytago vào △ANC vuông tại A có:

AN^2+AC^2=NC^2

=> 4+16=NC^2

=> NC= căn 20 = 2 x căn 5 (cm)

Vì BK là trung trực NC => K là trung điểm NC => KC = 1/2 NC = căn 5 (cm)

Áp dụng định lý Pytago vào △BKC vuông tại K có:

BC^2=BK^2+KC^2 => BK^2=BC^2+KC^2=25-5=20cm => BK=căn 20=2 nhânnhân căn 5 (cm)