K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

Xét số hạng tổng quát:

\(k^4+\frac{1}{4}=\left(k^4+2\cdot\frac{1}{2}\cdot k^2+\frac{1}{4}\right)-k^2\)=\(\left(k^2+\frac{1}{2}\right)^2-k^2\)

\(\left(k^2+\frac{1}{2}-k\right)\left(k^2+\frac{1}{2}+k\right)\)

Thay k từ 1 đến 12 ta được:

A=\(\frac{\frac{1}{2}\cdot\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)...\left(110+\frac{1}{2}\right)\left(132+\frac{1}{2}\right)}{\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)...\left(132+\frac{1}{2}\right)\left(152+\frac{1}{2}\right)}\)=\(\frac{\frac{1}{2}}{152+\frac{1}{2}}=\frac{1}{305}\)

22 tháng 7 2016

Vì cộng thêm k2 trong ngoặc nên phải trừ đi k2

...
Đọc tiếp

\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)

\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)

\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)

\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)

\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)

\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)

\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)

\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)

\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)

\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)

\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)

\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)

\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)

\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)

\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)

\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)

\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)

\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)

TRÌNH BÀY GIÚP MÌNH NHA 

0
29 tháng 9 2016

A = (1 - 2/3 + 4/3) - (4/5 - 1) + (7/5 + 2)

A= (3/3 - 2/3 + 4/3) - (4/5 - 5/5) + (7/5 + 10/5)

A= 5/3 + 1/5 + 17/5

A= 5/3 +18/5

A= 25/15 + 54/15

A= 79/15

B= (-3 + 3/4 - 1/3 ) : (5 + 2/5 - 2/3)

B= (-36/12 + 9/12 - 4/12) : (75/15 + 6/15 - 10/15)

B= -31/12 : 71/15

B= -155/284

C= (3/5 - 4/5 ) . (2/7 - 3/14) - (5/9 - 7/27) . (1 - 3/5) + (1 - 11/12) . (1-11/12)

C= -1/5 . 1/14 - 8/27 . 2/5 + 1/12 . 1/12

C=-1/70 - 16/135 + 1/144

C=-216/15120 - 1792/15120 + 105/15120

C=-1903/15120

9 tháng 6 2018

Ta có: \(a^4+4=a^4+4a^2+4-4a^2=\left(a^2+2\right)^2-\left(2a\right)^2=\left(a^2+2a+2\right)\left(a^2-2a+2\right)\) (*)

Nhân 24 vào mỗi tổng ở tử thức và mẫu thức ta có : \(S=\frac{\left(2^4+4\right)\left(6^4+4\right)...\left(38^4+4\right)}{\left(4^4+4\right)\left(8^4+4\right)...\left(40^4+4\right)}\)

Áp dụng (*) vào S ta được:

\(S=\frac{\left(2^2+2.2+2\right)\left(2^2-2.2+2\right)\left(6^2+2.6+2\right)\left(6^2-2.6+2\right)...\left(38^2+2.38+2\right)\left(38^2-2.38+2\right)}{\left(4^2+2.4+2\right)\left(4^2-2.4+2\right)\left(8^2+2.8+2\right)\left(8^2-2.8+2\right)...\left(40^2+2.40+2\right)\left(40^2-2.40+2\right)}\)

\(=\frac{2.10.26.50...1370.1522}{10.26.50.82...1522.1682}=\frac{2}{1682}=\frac{1}{841}\)

Vậy \(S=\frac{1}{841}\)

27 tháng 4 2020

bạn tham khảo : https://olm.vn/hoi-dap/detail/107489626252.html

31 tháng 12 2019

Câu hỏi của Kurosaki Akatsu - Toán lớp 8 - Học toán với OnlineMath