Khi tam giác ABC cân tại A Gọi K là điểm thuộc cạnh BC Chứng Minh AC>AK
GIÚP MÌNH VS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
góc AKB=góc KAC+góc ACK
=>góc AKB>góc ACK
=>góc AKB>góc ABK
=>AB>AK
=>AC>AK
a) +Xét tam giác ABC cân tại A có \(\widehat{A}\)= 100o
=>\(\widehat{B}=\widehat{C}=40^o\)
TT ta có: Tam giác AMN cân(AM=AN) tại A có\(\widehat{A}\)=100o
=>\(\widehat{AMN}=\widehat{ANM}=40^o\)
=>\(\widehat{B}=\widehat{C}\)\(=\widehat{AMN}=\widehat{ANM}\)
=>\(\widehat{B}=\widehat{AMN}\)
Mà hai góc này đồng vị =>MN//BC
+Xét tam giác AMC và tam giác ANB có:
AM=AN
 chung
AC=AB
Do đó tam giác AMC= tam giác ANB(c.g.c)
Suy ra BN=CM(hai cạnh t.ứ)
Bài 2 để tí mik lm tiếp, mik đag bận, bạn tích mik để mik có cái để tl tiếp nhé
Chúc học tốt
a) Ta có: AK+KB=AB(K nằm giữa A và B)
AH+HC=AC(H nằm giữa A và C)
mà AK=AH(gt)
và AB=AC(ΔABC cân tại A)
nên KB=HC
Xét ΔKBC và ΔHCB có
KB=HC(cmt)
\(\widehat{KBC}=\widehat{HCB}\)(hai góc ở đáy của ΔABC cân tại A)
BC chung
Do đó: ΔKBC=ΔHCB(c-g-c)
Suy ra: \(\widehat{KCB}=\widehat{HBC}\)(hai góc tương ứng)
hay \(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)
nên ΔOBC cân tại O(Định lí đảo của tam giác cân)
b) Xét ΔAKH có AK=AH(gt)
nên ΔAKH cân tại A(Định nghĩa tam giác cân)
Ta có: ΔAKH cân tại A(cmt)
nên \(\widehat{AKH}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAKH cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)
mà \(\widehat{AKH}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên KH//BC(Dấu hiệu nhận biết hai đường thẳng song song)
a: Xét ΔABH và ΔACK có
AB=AC
\(\widehat{A}\) chung
AH=AK
Do đó: ΔABH=ΔACK
a: Xét ΔABH và ΔACK có
AB=AC
\(\widehat{A}\) chung
AH=AK
Do đó: ΔABH=ΔACK
a)
Ta có: ΔABC cân tại A(gt)
mà AM là đường phân giác ứng với cạnh đáy BC(gt)
nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)
\(\Leftrightarrow AM\perp BC\)
Xét ΔABC có
AM là đường cao ứng với cạnh BC(cmt)
BK là đường cao ứng với cạnh AC(Gt)
AM cắt BK tại I(Gt)
Do đó: I là trực tâm của ΔBAC(Tính chất ba đường cao của tam giác)
Suy ra: CI\(\perp\)AB(Đpcm)
a) Tam giác ABC cân tại A có AM là phân giác, do đó AM cũng là đường cao
AM vuông góc với BC
Lại có BK vuông góc với AC
Do đó I là trực tâm của tam giác ABC
Vậy CI vuông góc với AB
b) Tam giác BDH = tam giác DBP (ch.gn)
Do đó BH = DP
BDKQ là hình chữ nhật => DP = HK
=> BK = BH + HK = DP + DQ (đpcm)
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
Do đó; ΔBAE=ΔBHE
b: ΔBAE=ΔBHE
=>EA=EH
=>ΔEAH cân tại E
c: BA=BH
EA=EH
=>BE là trung trực của AH
d: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại E
Do đó: E là trực tâm
=>BE vuông góc KC
góc AKB=góc KAC+góc C
=>góc AKB>góc C
=>góc AKB>góc B
=>AB>AK
=>AC>AK