K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

TH1: ABCD không phải là hình thoi hoặc hình vuông

Gọi BM,DN lần lượt là phân giác của \(\widehat{ABC};\widehat{ADC}\)

Xét tứ giác ABCD có

\(\widehat{BAD}+\widehat{ABC}+\widehat{BCD}+\widehat{ADC}=360^0\)

=>\(2\cdot\left(\widehat{NBM}+\widehat{NDM}\right)=360^0-\widehat{A}-\widehat{C}=360^0-2\cdot\widehat{C}\)

=>\(\widehat{NBM}+\widehat{NDM}=180^0-\widehat{C}\)(1)

Xét ΔCMB có

\(\widehat{C}+\widehat{CMB}+\widehat{CBM}=180^0\)

=>\(\widehat{CMB}+\widehat{NBM}=180^0-\widehat{C}\)(2)

Từ (1) và (2) suy ra \(\widehat{NDM}=\widehat{CMB}\)

mà hai góc này ở vị trí đồng vị

nên BM//DN (ĐPCM)

TH2: ABCD là hình thoi hoặc hình vuông

ABCD là hình thoi

=>BD là tia phân giác của \(\widehat{ABC}\) và DB là tia phân giác của \(\widehat{ADC}\)

=>Các đường phân giác của góc B và góc D trùng nhau

Bài 1) 

Trên AD lấy E sao cho AE = AB 

Xét ∆ACE và ∆ACB ta có : 

AC chung 

DAC = BAC ( AC là phân giác) 

AB = AE (gt)

=> ∆ACE = ∆ACB (c.g.c)

=> CE = CB (1)

=> AEC = ABC = 110°

Mà AEC là góc ngoài trong ∆EDC 

=> AEC = EDC + ECD ( Góc ngoài ∆ bằng tổng 2 góc trong không kề với nó)

=> ECD = 110 - 70 

=> EDC = 40°

Xét ∆ EDC : 

DEC + EDC + ECD = 180 °

=> CED = 180 - 70 - 40 

=> CED = 70° 

=> CED = EDC = 70° 

=> ∆EDC cân tại C 

=> CE = CD (2)

Từ (1) và (2) :

=> CB = CD (dpcm)

b) Ta có thể thay sao cho tổng 2 góc đối trong hình thang phải = 180°

21 tháng 8 2020

Cho tứ giác ABCD có các tia phân giác góc A và góc B vuông góc với nhau 

CM: tứ giác ABCD là hình thang

HOK TOT

30 tháng 6 2021

Giúp em với ạ, huhu