các bạn ơi giúp mình với đề bài cho là phương trình đường thẳng (D) đi qua giao điểm của hai đường thẳng.
y= x-2
y=-2x+1
và cắt trục hoành tại một điểm có tung độ là 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,PTHDGD:2x-1=-x+2\Leftrightarrow x=1\Leftrightarrow y=1\Leftrightarrow M\left(1;1\right)\\ b,\text{Gọi đt của }\left(d\right)\text{ là }y=ax+b\left(a\ne0\right)\\ \Leftrightarrow\left\{{}\begin{matrix}a+b=1\\0a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=4\end{matrix}\right.\Leftrightarrow\left(d\right):y=-3x+4\)
a: Vì (d) đi qua A(3;-4) và (0;2) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}3a+b=-4\\b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\)
b: vì (d)//y=-4x+4 nên a=-4
Vậy:(d): y=-4x+b
Thay x=-2 và y=0 vào (d), ta được:
b+8=0
hay b=-8
a: Vì (d) đi qua hai điểm (0;5) và (-2;0) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0+b=5\\-2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=5\\-2a=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=5\\a=\dfrac{5}{2}\end{matrix}\right.\)
Gọi đường thẳng có dạng y = mx + n ( n khác 0 ) (1)
Vì đường thẳng cắt trục tung tại điểm b nên đt đi qua điểm có ( 0 ; b )
thay x = 0 ; y = b vào (1) ta có :
b = 0.m + n=> n = b
Vì đường thẳng cắt trục hoàng tại điểm có hoành độ là a nên dt đi qua điểm ( a; 0 )
thay x = a ; y = 0 ta có :
y = a.m + n <=> y = a.m + b => m = -b/a ( a khác 0 )
Đường thẳng đó có phương trính là \(y=\frac{-b}{a}.x+b\Leftrightarrow\frac{y}{b}=-\frac{x}{a}+1\Leftrightarrow\frac{x}{a}+\frac{y}{b}=1\)
Vậy ....
giúp mình với các bạn ưi
Xét phương trình hoành độ giao điểm chung của 2 đường thẳng y=x-2 và y=-2x+1 ta có:
x-2=-2x+1
<=> 3x=3 <=> x=1
=> y=-1
=> (D) luôn đi qua điểm A(1;-1)
Gọi hàm số của đường thẳng (D) là y=ax+b
Vì (D) luôn đi qua điểm A(1;-1) => -1=a+b (1)
Vì (D) cắt trục hoành tại 1 điểm có hoành độ là 2 (??? tung độ, ;là sai nhé) => 0=2a+b(2)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=-1\\2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\a-2a=-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\end{matrix}\right.\)
=> y=x-2