K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2016

Ta có : p + 1 = n^2

=> p = (n-1)(n+1)

Do p nguyên tố => p là số lẻ => n là số chẵn

Nếu n > 2 => n chia hết cho 2 => p chia hết cho 2 (vo li)

Nếu n < 2 => p= 0 (vo li)

=> n = 2 => p = 3

23 tháng 9 2017

tìm số nguyên tố p để 4p + 1 là số chính phương

22 tháng 3 2018

 voi p=2 ta có 4p+1 =9 là số chính phương nên thoã mãn

voi p=3 ta có 4p+1 =13 không là số chính phương nênloại

Với p>3 thì ví p là số chính phương nên p không chia hết cho 3 suy ra p=3k+1 hoặc p=3k+2 với k thuộc N*

Nếu  p=3k+1 thì 4p+1 = 12k+5 chia 3 dư 2 mà số chính pgương chia cho 3 chỉ dư 0 hoặc 1 nên loại

Nếu  p=3k+2 thì 4p+1 = 12k+9 chia  hết cho 3 dư 2 mà không chia hết cho 9 số chính phương chia hết cho 3 cthì phải chia hết cho 9 nên loại

Vậy p=2

8 tháng 7 2015

Tìm các số có 4 chữ số sao mỗi số vừa là số chính phương vừa là số lập phương

Gọi số chính phương phải tìm là 
abcd
(a, b, c, d ∈ N, 0 ≤ b, c, d ≤ 9, 0 < a ≤ 9)
Ta có: 
abcd
= x^2                             (1)
  = y^3                              (1)
Với x, y ∈N và 31< x < 100; 10≤ y ≤ 21 (2)
Từ (1) ta suy ra y cũng là một số chính phương và từ (2) ta suy ra y = 16
Do đó : 
abcd
= 16^3
= 4096 = 64^2

Vậy số phải tìm là 4096

2 tháng 11 2023

Bạn chỉ cần cho \(n\) lẻ thì \(p^{n+1}\) chính phương rồi nhé.

7 tháng 5 2020

Đặt \(\frac{p+1}{2}=x^2;\frac{p^2+1}{2}=y^2\left(x;y\inℕ^∗;x< y\right)\)

\(\Rightarrow p+1=2x^2;p^2+1=2y^2\) => p là số lẻ

Ta dễ thấy rằng \(2x^2\equiv2y^2\left(modp\right)\) mà p lẻ nên \(x^2\equiv y^2\left(modp\right)\)

Mặt khác ta có:\(x^2-y^2=\left(x-y\right)\left(x+y\right)⋮p\Rightarrow x+y=p\) ( vì x < y < p )

Từ đó ta dễ có rằng \(p^2+1=2\left(p-x\right)^2=2p^2-4px+2x^2=2p^2-4px+p+1\)

\(\Rightarrow4px=p^2+p\Leftrightarrow4x=p+1\Rightarrow2x^2=4x\Rightarrow x=0\left(h\right)x=2\Rightarrow p=-1\left(h\right)p=7\)

Mà p là số nguyên tố nên p = 7

Vậy p = 7

12 tháng 10 2022

cho mình hỏi là tại sao có 2x2 \(\equiv\) 2y2 (mod p)