K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

pan lucy heartfilia oi ,pn cho mk di mk giai cho

27 tháng 11 2021

a) Ta có: ^BAH = ^BCA (vì 2 góc này cùng phụ với ^B) 
Mà: ^MAC = ^BCA (tg MAC cân tại M vì Tg ABC vuông tại A có AM là trung tuyến) 
Nên: ^BAH = ^MAC (4) 
b) Tg AMD cân tại M (vì MA=MD) => ^D = ^DAM (1) 
Ta có: MD//AH ( vì MD_I_ HM, AH _I_ HM ) 
Nên: ^D = ^DAH (2) 
(1)(2) => ^DAM = ^DAH (3) => AD là p/g của ^HAM (5) 
(3)(4) => ^BAH + ^DAH = ^MAC + ^DAM <=> ^BAD=^CAD => AD là p/g của ^BAC (6) 
(5)(6) => AD là p/g chung của ^HAM và ^BAC 
c) Ta có: AEDF là hcn ( vì ^E=^F=^A=90o ) 
Mà: AD là p/g của ^EAC (cmt) 
Nên: AEDF là hình vuông 
d) Tg DBE (^DEA=90o) và tg DCF (^DFC=90o) có: 
DE = DF (AEDF là hình vuông) 
DB = DC (MD là đường trung trực của BC) 
Nên: Tg DBE = tg DCF (ch-cgv)

20 tháng 3 2019

Ta có:    B A M ^ = B ^    ( g t )     C A N ^ = C ^     ( g t )  

Þ AM // BC;   AN // BC  (vì có cặp góc so le trong bằng nhau).

Þ 3 điểm M, A, N thẳng hàng (vì qua điểm A chỉ vẽ được một đường thẳng song song với BC).

Vậy MN // BC mà d ⊥ B C  nên d ⊥ M N      (1)

Ta có: A M = A B ;   A N = A C  

mà AB = AC (gt) nên AM = AN.              (2)

Từ (1) và (2) Þ d là trung trực của MN

5 tháng 7 2019

a)  B A H ^ + M A C ^  vì cùng phụ với  A B C ^

b) A 1 ^ = C 1 ^ (1) (chứng minh a)

DABC vuông có AM là trung tuyến nên DAMC cân tại M C 1 ^ = A 4 ^ (2).

Từ (1) và (2) suy ra A 1 ^ = A 4 ^ (3)

D thuộc đường trung trực của BC.

Þ DM ^ BC = {M}

Þ  D 1 ^ = A 2 ^

Vì DM = MA (giả thiết) ⇒   M 1 ^ =   A 3 ^   ⇒   A 2 ^ = A 3 ^    (4)

Từ (3) và (4) Þ AD là phân giác chung của  M A H ^   & C A B ^

c) Theo cách vẽ và kết quả câu b), ta có AEDF là hình vuông.

d) DDBE = DDCF  (cạnh huyền - cạnh góc vuông)

a: Vì A nằm trên đường trung trực của BC

nên AB=AC

Vì D nằm trên đường trung trực của BC

nen DB=DC

Xét ΔABD và ΔACD có 

AB=AC

BD=CD

AD chung

Do đó:ΔABD=ΔACD

b: Gọi giao điểm của BC và AD là O

=>O là trung điểm của BC

Trường hợp 1: A,D nằm cùng phía

\(AO=\sqrt{AB^2-BO^2}=4.5\left(cm\right)\)

\(DO=\sqrt{6.5^2-6^2}=2.5\left(cm\right)\)

=>AD=2(cm)

TH2: A,D khác phía

\(AO=\sqrt{7.5^2-6^2}=4.5\left(cm\right)\)

\(DO=\sqrt{6.5^2-6^2}=2.5\left(cm\right)\)

AD=AO+DO=7(cm)

15 tháng 8 2017

a) Vì hai điểm A, B nằm trên hai nửa mặt phẳng đối nhau bờ m nên đoạn thẳng AB cắt đường thẳng m.

b) Từ câu a), ta suy ra điểm K nằm giữa hai điểm B, C  nên tia AK nằm giữa hai tia AB và AC.

Tương tự, ta có điểm I nằm giữa hai điểm A, C nên tia BI nằm giữa, hai tia BA, BC.

c*) Từ câu b), ta suy ra tia BI nằm giữa hai tia BA,BK nên tia BI cắt đoạn thẳng AK tại một điểm nằm giữa A và K.

Lập luận tương tự, ta có tia AK cắt đoạn thẳng BI tại một điểm nằm giữa B và I. Từ đó suy ra hai đoạn thẳng AK và BI cắt nhau.