tìm n nhỏ nhất sao cho n^3+4n^2-20n-48 chia hết cho 125 và n>4
giúp mk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=n^3+4n^2-20n-48=\left(n+2\right)\left(n-4\right)\left(n+6\right)\)
Với \(n=4\Rightarrow P=0⋮125\)(thỏa)
Với \(n< 4\)thử từng giá trị đều không thỏa.
Vậy số \(n\)nhỏ nhất cần tìm là \(4\).
\(n^3+4n^2-20n-48\)
\(=n^3-4n^2+8n^2-32n+12n-48\)
\(=\left(n^3-4n^2\right)+\left(8n^2-32n\right)+\left(12n-48\right)\)
\(=n^2\left(n-4\right)+8n\left(n-4\right)+12\left(n-4\right)\)
\(=\left(n-4\right)\left(n^2+8n+12\right)\)
Nhận thấy n = 4 thì biểu thức trên bằng 0, chia hết cho 125.
Vậy số tự nhiên n nhỏ nhất là bằng 4 (thử với n = 1, 2, 3 đều không chia hết cho 125)
b) Ta tính tổng các chữ số của số khi được tạo thành.
Xét các số có 1 chữ số thì tổng bằng \(45\).
Xét các số có 2 chữ số: tổng các chữ số hàng chục là \(10.1+...+10.9=10.45\)
tổng các chữ số hàng đơn vị là \(\left(0+1+2+...+9\right).9=9.45\)
Xét số có 3 chữ số thì tổng các chữ số là \(1+0+0=1\)
Do đó tổng các chữ số của số được tạo thành là \(45+10.45+9.45+1⋮̸9\)
Mà \(2016⋮9\)nên số tạo thành không chia hết cho \(2016\).
\(a,n^2+4n+96⋮n+1\)
\(\Rightarrow n^2+n+3n+96⋮n+1\)
\(\Rightarrow n\left(n+1\right)+3n+3+93\)
\(\Rightarrow n\left(n+1\right)+3\left(n+1\right)+93⋮n+1\)
\(\Rightarrow\left(n+3\right)\left(n+1\right)+93⋮n+1\)
\(\Rightarrow93⋮n+1\)
=> Tự lập bảng nha OK
Phần b tương tự
Ta có: \(2000=2^4.5^3\).
Suy ra \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮125\)
mà \(n,n+1,n+2,n+3\)là bốn số tự nhiên liên tiếp nên có tối đa một số trong bốn số đó chia hết cho \(5\), khi đó số đó cũng phải chia hết cho \(125\).
Với \(n+3=125\Leftrightarrow n=122\)thử trực tiếp không thỏa.
Với \(n+2=125\Leftrightarrow n=123\)thử trực tiếp không thỏa.
Với \(n+1=125\Leftrightarrow n=124\)thử trực tiếp không thỏa.
Với \(n=125\)thử lại thỏa mãn.
Vậy \(n=125\)là giá trị cần tìm.
F=(n+6)(n+2)(n−4)
n=5k+1 thì không thỏa mãn
n=5k+2 thì không thỏa mãn
n=5k+3 thì muốn 125|F thì k+1⋮25 rồi xét ....
Tương tự với 5k+4,5k
thank you nha