Giúp mình bài 3 phần b với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn ghi bài ra đi quyển đấy mk làm mất rồi
Bài 2:
\(\left|\left|x^3-4\right|+21\right|:5=5\)
\(\Leftrightarrow\left|\left|x^3-4\right|+21\right|=25\)
\(\Leftrightarrow\left|x^3-4\right|+21=25\) hay \(\left|x^3-4\right|+21=-25\)
\(\Leftrightarrow\left|x^3-4\right|=4\) hay \(\left|x^3-4\right|=-46\) (vô lí do \(\left|x^3-4\right|\ge0\forall x\))
\(\Leftrightarrow x^3-4=4\) hay \(x^3-4=-4\)
\(\Leftrightarrow x^3-8=0\) hay \(x^3=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\) hay \(x=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\right)=0\) hay \(x=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\) hay \(x=0\)
\(\Leftrightarrow x=2\) hay \(x=0\) hay \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\) (vô nghiệm do \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\))
-Vậy \(S=\left\{0;2\right\}\)
Bài 3:
\(\left|\left|2x^2-2\right|+6\left|x^2-1\right|\right|=4^6:\left(2^3\right)^2\)
\(\Leftrightarrow\left|\left|2x^2-2\right|+6\left|x^2-1\right|\right|=64\)
\(\Leftrightarrow\left|2x^2-2\right|+6\left|x^2-1\right|=64\) (*) hay \(\Leftrightarrow\left|2x^2-2\right|+6\left|x^2-1\right|=-64\) (pt vô nghiệm do \(\left|2x^2-2\right|+6\left|x^2-1\right|\) luôn là số thực dương)
-Có: \(\left|2x^2-2\right|=2x^2-2\) nếu \(x\ge1\) hay \(x\le-1\).
\(\left|2x^2-2\right|=-2x^2+2\) nếu \(x\le1\) hay \(x\ge-1\).
\(6\left|x^2-1\right|=6\left(x^2-1\right)\) nếu \(x\ge1\) hay \(x\le-1\)
\(6\left|x^2-1\right|=-6\left(x^2-1\right)\) nếu \(x\le1\) hay \(x\ge-1\)
-TH1: \(x\le-1\):
(*) \(\Leftrightarrow2x^2-2+6\left(x^2-1\right)=64\)
\(\Leftrightarrow2x^2-2+6x^2-6=64\)
\(\Leftrightarrow8x^2-72=0\)
\(\Leftrightarrow x^2-9=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow x=3\) (loại) hay \(x=-3\) (nhận)
-TH2: \(-1\le x\le1\):
(*) \(\Leftrightarrow-2x^2 +2-6\left(x^2-1\right)=64\)
\(\Leftrightarrow-2x^2+2-6x^2 +6=64\)
\(\Leftrightarrow-8x^2-56=0\)
\(\Leftrightarrow8x^2+56=0\) (pt vô nghiệm do \(8x^2+56\ge56\forall x\))
-TH3: \(x\ge1\):
-TH1: \(x\le-1\):
(*) \(\Leftrightarrow2x^2-2+6\left(x^2-1\right)=64\)
\(\Leftrightarrow2x^2-2+6x^2-6=64\)
\(\Leftrightarrow8x^2-72=0\)
\(\Leftrightarrow x^2-9=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow x=3\) (nhận) hay \(x=-3\) (loại)
-Vậy \(S=\left\{3;-3\right\}\)
Bài III.2b.
Phương trình hoành độ giao điểm của \(\left(P\right)\) và \(\left(d\right)\) : \(x^2=\left(m+1\right)x-m-4\)
hay : \(x^2-\left(m+1\right)x+m+4=0\left(I\right)\)
\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm nên phương trình \(\left(I\right)\) sẽ có hai nghiệm phân biệt. Do đó, phương trình \(\left(I\right)\) phải có :
\(\Delta=b^2-4ac=\left[-\left(m+1\right)\right]^2-4.1.\left(m+4\right)\)
\(=m^2+2m+1-4m-16\)
\(=m^2-2m-15>0\).
\(\Rightarrow m< -3\) hoặc \(m>5\).
Theo đề bài : \(\sqrt{x_1}+\sqrt{x_2}=2\sqrt{3}\)
\(\Rightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=\left(2\sqrt{3}\right)^2=12\)
\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=12\left(II\right)\)
Do phương trình \(\left(I\right)\) có hai nghiệm khi \(m< -3\) hoặc \(m>5\) nên theo định lí Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{-\left(m+1\right)}{1}=m+1\\x_1x_2=\dfrac{c}{a}=\dfrac{m+4}{1}=m+4\end{matrix}\right.\).
Thay vào \(\left(II\right)\) ta được : \(m+1+2\sqrt{m+4}=12\)
Đặt \(t=\sqrt{m+4}\left(t\ge0\right)\), viết lại phương trình trên thành : \(t^2-3+2t=12\)
\(\Leftrightarrow t^2+2t-15=0\left(III\right)\).
Phương trình \(\left(III\right)\) có : \(\Delta'=b'^2-ac=1^2-1.\left(-15\right)=16>0\).
Suy ra, \(\left(III\right)\) có hai nghiệm phân biệt :
\(\left\{{}\begin{matrix}t_1=\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{-1+\sqrt{16}}{1}=3\left(t/m\right)\\t_2=\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{-1-\sqrt{16}}{1}=-5\left(ktm\right)\end{matrix}\right.\)
Suy ra được : \(\sqrt{m+4}=3\Rightarrow m=5\left(ktm\right)\).
Vậy : Không có giá trị m thỏa mãn đề bài.
Bài IV.b.
Chứng minh : Ta có : \(OB=OC=R\) nên \(O\) nằm trên đường trung trực \(d\) của \(BC\).
Theo tính chất hai tiếp tuyến cắt nhau thì \(IB=IC\), suy ra \(I\in d\).
Suy ra được \(OI\) là một phần của đường trung trực \(d\) của \(BC\) \(\Rightarrow OI\perp BC\) tại \(M\) và \(MB=MC\).
Xét \(\Delta OBI\) vuông tại \(B\) có : \(MB^2=OM.OI\).
Lại có : \(BC=MB+MC=2MB\)
\(\Rightarrow BC^2=4MB^2=4OM.OI\left(đpcm\right).\)
Tính diện tích hình quạt tròn
Ta có : \(\hat{BAC}=\dfrac{1}{2}sđ\stackrel\frown{BC}\Rightarrow sđ\stackrel\frown{BC}=2.\hat{BAC}=2.70^o=140^o\) (góc nội tiếp).
\(\Rightarrow S=\dfrac{\pi R^2n}{360}=\dfrac{\pi R^2.140^o}{360}=\dfrac{7}{18}\pi R^2\left(đvdt\right)\)
1b) \(C=\sqrt{81a}-\sqrt{144a}+\sqrt{36a}\left(a\ge0\right)=8\sqrt{a}-12\sqrt{a}+6\sqrt{a}=2\sqrt{a}\)
Bài 2:
a),b) \(P=\left(\dfrac{1}{1-\sqrt{a}}-\dfrac{1}{1+\sqrt{a}}\right)\left(\dfrac{1}{\sqrt{a}}+1\right)\left(đk:x>0,x\ne1\right)\)
\(=\dfrac{1+\sqrt{a}-1+\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}.\dfrac{\sqrt{a}+1}{\sqrt{a}}=\dfrac{2\sqrt{a}}{1-\sqrt{a}}.\dfrac{1}{\sqrt{a}}=\dfrac{2}{1-\sqrt{a}}\)
c) \(P=\dfrac{2}{1-\sqrt{a}}=\dfrac{2}{1-\sqrt{4}}=\dfrac{2}{1-2}=-2\)
d) \(P=\dfrac{2}{1-\sqrt{a}}=9\)
\(\Rightarrow-9\sqrt{a}+9=2\Rightarrow\sqrt{a}=\dfrac{7}{9}\Rightarrow a=\dfrac{49}{81}\left(tm\right)\)
Xét hiệu:
\(\frac{a}{b}-\frac{a+2007}{b+2007}=\frac{a.\left(b+2007\right)-b.\left(a+2007\right)}{b.\left(b+2007\right)}=\frac{ab+2007a-ab+2007b}{b.\left(b+2007\right)}=\frac{2007.\left(a-b\right)}{b.\left(b+2007\right)}\)
Xét 3 trường hợp:
TH1: a=b\(\Rightarrow\)a-b=0\(\Rightarrow\)\(\frac{2007.\left(a-b\right)}{b.\left(b+2007\right)}=\frac{2007.0}{b.\left(b+2007\right)}=0\)\(\Rightarrow\frac{a}{b}=\frac{a+2007}{b+2007}\)
TH2: a<b\(\Rightarrow\)a-b<0\(\Rightarrow\)\(2007.\left(a-b\right)< 0\Rightarrow\frac{2007.\left(a-b\right)}{b.\left(b+2007\right)}< 0\)\(\Rightarrow\frac{a}{b}< \frac{a+2007}{b+2007}\)
TH3: a>b\(\Rightarrow\)a-b>0\(\Rightarrow\)\(2007.\left(a-b\right)>0\Rightarrow\frac{2007.\left(a-b\right)}{b.\left(b+2007\right)}>0\)\(\Rightarrow\frac{a}{b}>\frac{a+2007}{b+2007}\)
Vậy với a=b thì \(\frac{a}{b}=\frac{a+2007}{b+2007}\)
a<b thì \(\frac{a}{b}< \frac{a+2007}{b+2007}\)
a>b thì \(\frac{a}{b}>\frac{a+2007}{b+2007}\)
a: M nằm giữa A và B
=>AM+MB=AB
=>MB=3cm=AM
=>M là trung điểm của AB
b: Số đoạn thẳng tạo ra là:
\(C^2_{22}=231\left(đoạn\right)\)
Xét ΔAFC và ΔBCE có
\(\widehat{C}\) chung
\(\widehat{FAC}=\widehat{CBE}\)
Do đó: ΔAFC\(\sim\)ΔBCE
Suy ra: \(\dfrac{AF}{BC}=\dfrac{CF}{CE}\)
\(\Leftrightarrow AF\cdot EC=BC\cdot CF\)
hay \(AF=BE\cdot cosC\)
Bài 3b:
Giả sử có $a$ hs và mỗi hs dự định trồng $b$ cây
Theo bài ra ta có:
$480=ab(1)$
$480=(a-8)(b+3)$
$\Leftrightarrow 480=ab+3a-8b-24$
$\Leftrightarrow 480=480+3a-8b-24$
$\Leftrightarrow 3a-8b=24(2)$
Từ $(1); (2)\Rightarrow 3a-8.\frac{480}{a}=24$
$\Leftrightarrow 3a-\frac{3840}{a}=24$
$\Leftrightarrow a-\frac{1280}{a}=8$
$\Rightarrow a^2-8a-1280=0$
$\Leftrightarrow (a-40)(a+32)=0$
$\Rightarrow a=40$ (do $a>0$)
Vậy lớp 9A có $40$ hs.