Chứng minh rằng:
5^5-5^4+5^3chia hết 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a , 5^5 -5^4+5^3=5^3.5^2 -5^3.5+5^3
=5^3(5^2-5+1)=5^3.21
vì 21 chia hết cho 7 =>5^3.21 chia hết cho 7
vậy 5^5 -5^4+5^3 chia hết cho 7
b, 7^6+7^5-7^4
=7^4(7^2+7-1)
=7^4.55=7^4.5.11 chia hết cho 11
a , 5^5 -5^4+5^3=5^3.5^2 -5^3.5+5^3
=5^3(5^2-5+1)=5^3.21
vì 21 chia hết cho 7 =>5^3.21 chia hết cho 7
vậy 5^5 -5^4+5^3 chia hết cho 7
b, 7^6+7^5-7^4
=7^4(7^2+7-1)
=7^4.55=7^4.5.11 chia hết cho 11
giai xoq moq pn **** gium mk nke
3) (57 - 56 +55) = 55.(52-5+1)= 55.21 \(⋮\) 21
4) 76+75-74= 74.(72+7-1)=74.55=73.7.11.4=73.4.77 \(⋮\) 77
3) \(5^7-5^6+5^5=5^5.\left(5^2-5+1\right)=5^5.21⋮21\)
4) \(7^6+7^5-7^4=7^3.\left(7^3+7^2-7\right)=7^3.385=7^3.77.5⋮77\)
\(A=5^5-5^4+5^3\)
\(\Rightarrow A=5^3\left(5^2-5^1+1\right)\)
\(\Rightarrow A=5^3\left(25-5+1\right)\)
\(\Rightarrow A=5^3.21=5^3.3.7⋮7\)
\(\Rightarrow dpcm\)
a) 55 - 54 + 53 = 53.(52 - 5 + 1) = 53.(25 - 5 + 1) = 53.21 chia hết cho 7
b) 76 + 75 - 74 = 74.(72 + 7 - 1) = 74.(49 + 7 - 1) = 74.55 chia hết cho 11
a)
\(5n+3⋮n+2\)
\(5n+10-7⋮n+2\)
\(5\left(n+2\right)-7⋮n+2\)
mà \(5\left(n+2\right)⋮n+2\Rightarrow7⋮n+2\)
\(\Rightarrow n+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng :
n+2 | 1 | -1 | 7 | -7 |
n | -1 | -3 | 5 | -9 |
Vậy x = { -9; -3; -1; 5 }
Đề ra là số tự nhiên mà không phải số nguyên âm làm đúng rồi bỏ nguyên âm đi là ok
a, Ta có:
\(5^5-5^4+5^3=5^3.\left(5^2-5+1\right)=5^3.21\)
Vì \(5^3.21\) chia hết cho 7 nên \(5^5-5^4+5^3\) chia hết cho 7(đpcm)
b, Ta có:
\(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55\)
Vì \(7^4.55\) chia hết cho 11 nên \(7^6-7^5+7^4\) chia hết cho 11(đpcm)
Chúc bạn học tốt!!!
a, \(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21⋮7\)
\(\Rightarrowđpcm\)
b, \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55⋮11\)
\(\Rightarrowđpcm\)
ta có : \(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21=5^3.3.7⋮7\)
\(\Rightarrowđpcm\)
\(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3\cdot\left(25-5+1\right)=5^3\cdot21\)
Vì \(21⋮7\Rightarrow5^3\cdot21⋮7\Rightarrow5^5-5^4+5^3⋮7\)
Vậy \(5^5-5^4+5^3⋮7\left(đpcm\right)\)
* 5^5 -5^4+5^3=5^3.5^2 -5^3.5+5^3
=5^3(5^2-5+1)=5^3.21
vì 21 chia hết cho 7 =>5^3.21 chia hết cho 7
vậy 5^5 -5^4+5^3 chia hết cho 7
5^5 - 5^4 + 5^3
= 5^3(5^2-5+1)
= 5^3 x 21
Mả 21 chia hết cho 7
\(\Rightarrow\)5^3 x 21 chia hết cho 7
\(\Rightarrow\)5^5-5^4+5^3 chia hết cho 7