K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

\(\frac{5}{x-2}=\frac{15}{6}\)

\(\Rightarrow15x-30=30\)

\(15x=60\)

\(x=4\)

19 tháng 8 2016

x = 4

k cho mk nha

ai k mk mk k lại

18 tháng 8 2016

(x - 2/3)3 = -1/27

=> (x - 2/3)3 = (-1/3)3

=> x - 2/3 = -1/3

=> x = -1/3 + 2/3

=> x = 1/3

18 tháng 8 2016

Từ bài ra ta có \(\left(x-\frac{2}{3}\right)^3=\left(\frac{-1}{3}\right)^3\)

\(\Rightarrow x-\frac{2}{3}=\frac{-1}{3}\)

\(\Rightarrow x=\frac{-1}{3}+\frac{2}{3}\)

\(\Rightarrow x=\frac{1}{3}\)

Vậy ... nếu đúng thì k nha

18 tháng 8 2016

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{14}=\frac{y}{21}\)

\(\frac{y}{7}=\frac{z}{4}\Rightarrow\frac{y}{21}=\frac{z}{12}\)

\(\Leftrightarrow\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)

\(\Rightarrow x=52;y=63;z=36\)

18 tháng 8 2016

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{7}=\frac{z}{4}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{14}=\frac{y}{21}\\\frac{y}{21}=\frac{z}{12}\end{cases}\Rightarrow}\frac{x}{14}=\frac{y}{21}=\frac{z}{12}}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)

\(\Rightarrow\hept{\begin{cases}x=3.14=42\\y=3.21=63\\z=3.12=36\end{cases}}\)

28 tháng 7 2016

\(\Rightarrow\frac{x+1+y+2+z+3}{3+4+5}\)

\(\Rightarrow\frac{24}{12}=2\)

\(\frac{x+1}{3}=2\Rightarrow x=5\)

\(\frac{y+2}{4}=2\Rightarrow y=6\)

\(\frac{z+3}{5}=2\Rightarrow z=7\)

1 tháng 3 2017

a) \(\frac{2}{3a}-\frac{3}{a}=\frac{2}{3a}-\frac{9}{3a}=\frac{-7}{3a}=\frac{7}{15}\Leftrightarrow-3a=15\Leftrightarrow a=-5\)

b)\(2x^3-1=15\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)

\(\Rightarrow\frac{2+16}{9}=\frac{y-15}{16}=2\Leftrightarrow y-15=32\Leftrightarrow y=47\)

c) \(\left|x\right|=3\Rightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\) rồi xét 2 trường hợp để tính A nhé :)

1 tháng 3 2017

Bài 1: ĐK của a: \(a\ne0\)

Quy đồng VT ta có: \(\frac{2a-9a}{3a^2}=\frac{7}{15}\)

                    \(\Leftrightarrow\frac{-7a}{3a^2}=\frac{7}{15}\)

                    \(\Leftrightarrow-7a.15=3a^2.7\)

                    \(\Leftrightarrow-105a=21a^2\)

                    \(\Leftrightarrow-105a-21a^2=0\)

                    \(\Leftrightarrow a\left(-105-21a\right)=0\)

                    \(\Leftrightarrow\hept{\begin{cases}a=0\left(l\right)\\-105-21a=0\end{cases}\Leftrightarrow a=-5\left(n\right)}\)

Vậy:..

12 tháng 8 2016

   2.3x+2+4.3x+1=10.36

2.3.3x+1+4.3x+1=10.36

   6.3x+1+4.3x+1=10.36

            10.3x+1=10.36

=>3x+1=36

=>x+1=6 =>x=5

Ai thấy đúng cho mình nha!

12 tháng 8 2016

\(2.3^{x+2}+4.3^{x+1}=10.3^6\)

\(2.3^{x+2}+2^2.3^{x+1}=2.5.3^6\)

\(2.3^{x+1}\left(3+2\right)=2.5.3^6\)

\(2.3^{x+1}.5=2.5.3^6\)

\(\Rightarrow x+1=6\Rightarrow x=5\)

Bài 1: Tìm x, biết 5 3.5 5 .2 2 3 2 2 x   Bài 2: Tìm x, biết: (7x-11)3 = 25.52 + 200 Bài 3: Tìm x biết : 2 15 2 15 x x    5 3   Bài 4: Tìm số tự nhiên x biết 8.6 + 288 : (x - 3)2 = 50 Bài 5: Tìm x: 22x – 1 + 6.28 = 14.28 Bài 6: Tìm số tự nhiên x biết: a) 23x + 52x = 2(52 + 23) – 33 b) 260 : (x + 4) = 5(23 + 5) – 3(32 + 22) c) (3x – 4)10 – 3 = 1021 d) (x2 + 4) (x + 2) Bài 7: Tìm số tự nhiên x,...
Đọc tiếp

Bài 1: Tìm x, biết 5 3.5 5 .2 2 3 2 2 x 
Bài 2: Tìm x, biết: (7x-11)3 = 25.52 + 200
Bài 3: Tìm x biết : 2 15 2 15 x x    5 3  
Bài 4: Tìm số tự nhiên x biết 8.6 + 288 : (x - 3)2 = 50
Bài 5: Tìm x: 22x – 1 + 6.28 = 14.28
Bài 6: Tìm số tự nhiên x biết:
a) 2
3x + 52x = 2(52 + 23) – 33 b) 260 : (x + 4) = 5(23 + 5) – 3(32 + 22)
c) (3x – 4)
10 – 3 = 1021 d) (x2 + 4) (x + 2)
Bài 7: Tìm số tự nhiên x, biết: 5 .5 .5 1000...0: 2 x x x   1 2 18
Bài 8: Tìm số tự nhiên x biết: 2x 2x1 2x2 ... 2x2015 22019 8
Bài 9: Tìm x N biết :
a) 1
3 + 23 + 33 + ...+ 103 = ( x +1)2; b) 1 + 3 + 5 + ...+ 99 = (x -2)2
Bài 10: Tìm các số tự nhiên x, y sao cho (2x + 1)(y – 5) = 12
DẠNG 3: SO SÁNH BIỂU THỨC, LUỸ THỪA
Bài 11:
So sánh hai tích sau mà không tính cụ thể giá trị của chúng:
a)
A 123.123B 124.122; b) A 987.984B 986.985.
c) C = 345.350 và D = 348.353 d) P = 75.36 + 23 và Q = 36.77 – 64
e) E = 35.56 + 17 và F = 34.57 – 14

Bài 12. Không tính kết quả của biểu thức, hãy so sánh
a)
A 2019.2021 B 20202 b)
2021
2022

10 1
10 1

M  


2022
2023

10 1
10 1

N  

.
Bài 13:
Cho A = 1 + 2012 + 20122 + 20123 + 20124 + … + 201271 + 201272
B = 2012
73 - 1. So sánh A và B.
Bài 14: Cho D     1 2 ... 22021. Chứng minh D 22022
Bài 15: Cho E = 6 +62 +...+ 62020. So sánh 5E + 6 với 361011
Bài 16: Cho S = 2.1+2.3 +2.32+2.32020. So sánh S + 2 với 4.91010
Bài 17: Cho S = 5.1+5.4 +5.42+5.42021 . So sánh 3S + 5 với 80. 16 1010
* Các bài toán về so sánh luỹ thừa
Loại 1: Biến đổi về cùng cơ số hoặc số mũ

Bài 1: Hãy so sánh:
a.
1619 825 b. 2711 818 . c) 1619 825 d) 6255 1257 .
Bài 2: Hãy so sánh:
a.
1287 424 b. 536 1124 c. 3260 8150 d. 3500 7300 .
PBT CLB Toán 6 Cô Yến -TNT
Bài 3: Hãy so sánh:
a)
3210 2350 b) 231 321 c) 430 3 24 . . 10
Bài 4: Hãy so sánh:
a)
32n 23n * n N b) 5300 3500 .
Bài 5: Hãy so sánh:
a)
32 2 n n 9n12 b) 256n 16n5 (với n N )
Loại 2: Đưa về một tích trong đó có thừa số giống nhau
Bài 1: Hãy so sánh:
a)
202303 303202 . b) 2115 27 49 5 8 . . c)3.275 2435 .
Bài 2: Hãy so sánh:
a)
2015 2015 2015 2014 2015 2015 2016 2015 . b) 2015 2015 10 9 201610.
Bài 3: Hãy so sánh:
a)
A   72 72 45 44 B   72 72 44 43 . b) 3775 7150 .
Bài 4: Hãy so sánh:
a)
523 6 5 . 22 b) 7 2 . 13 216 c) 1512 81 125 3 5 . .
Bài 5: Hãy so sánh 9920 999910 .
Loại 3: So sánh thông qua một lũy thừa trung gian
Bài 1: Hãy so sánh 2 3 4 30 30 30   3 24 . 10 .
Bài 2: Hãy so sánh:
a)
2225 3151 b) 19920 200315 c) 291 536.
Bài 3: Hãy so sánh:
a)
9920 9 11 10 30 . b) 96142 100 23 . 93 .
Bài 4: Hãy so sánh:
a)
10750 7375 b) 3339 1121.
Bài 5: Hãy so sánh:
a)
A 123456789 B 567891234 . b) 111979 371320 .
Loại 4: So sánh thông qua hai lũy thừa trung gian
Bài 1: Hãy so sánh
a)
1720 3115 b) 19920 10024 c) 3111 1714 .
Bài 2: Hãy so sánh
a)
111979 371321 b) 10750 5175 c) 3201 6119 .
Bài 3: Chứng minh rằng: a) 2 5 1995 863 . b) 5 2 5 27 63 28   .
 

 

1
13 tháng 10 2023

huhuhuhu help me cứi tui

27 tháng 10 2016

Bài 1: Tìm x, y, z

\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)

=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)

-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

\(\frac{x}{9}=3\rightarrow x=27\)

\(\frac{y}{12}=3\rightarrow y=36\)

\(\frac{z}{20}=3\rightarrow z=60\)

Vậy x = 27 ; y = 36 ; z = 60

Bài 2 : Tìm x, y:

5x = 2y và x.y = 40

Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)

Cách 1:

\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40

Đặt \(\frac{x}{2}=\frac{y}{5}\) = k

=> x = 2.k ; y = 5.k

x.y = 40 -> 2k = 5k = 40

-> 10 . \(k^2\) = 40

-> \(k^2\) = 4 -> k = 2 hoặc k = -2

k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)

k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)

Cách 2:

\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)

=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4

x = 4 -> 4.y = 40 => y = 10

x = -4 -> (-4).y = 40 => y = -10

Vậy x = 4 hoặc -4

y = 10 hoặc -10

 

 

 

27 tháng 10 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)

\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)