Cho tam giác đều ABC, ve tia Ax sao cho tia AC là tia phân giác của góc xAc. Trên Ax lấy M, trên tia đối của tia CA lấy N sao cho AM=CN. Chứng minh tam giác BMN là tam giác đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABD có :
AB = AD (gt)
Suy ra tam giác ABD cân tại BAD
Suy ra góc ABD = góc ADB ( 2 góc đáy)
Ta có : góc BAD + góc CAD = góc BAC
mà góc BAC = 120 độ ; góc BAD =góc CAD (gt)
Suy ra 2BAD= 120 độ
Suy ra BAD= 120 độ chia 2
Suy ra BAD =60 độ
Ta lại có tam giác BAD cân tại BAD
Suy ra BDA =DBA =(180 độ - BAD) chia 2
mà BAD = 60 độ
Suy ra BDA=DBA= (180 độ - 60 độ ) chia 2
Suy ra BDA=DBA = 60độ
Xét tam giác BDA có
BDA=DBA=BAD=60 độ
Suy ra tam giác BDA đều
Ta dễ dàng tính được ngay MABˆMAB^=BAOˆBAO^(dựa vào tia phân giác của góc BAC và góc ngoài của góc đó)
Xét tam giác ABM và tam giác ABO có:
BA là cạnh chung
MABˆMAB^=BAOˆBAO^
MBAˆMBA^=ABOˆABO^(gt)
=>tam giác ABM=tam giác ABO(g.c.g)
=>AM=AO.
Ta cũng dễ dàng tính được OACˆOAC^=CANˆCAN^(dựa vào tia phân giác của góc BAC và góc ngoài của góc đó)
Xét tam giác COA và tam giác CNA có:
AC là cạnh chung
OACˆOAC^=CANˆCAN^(c/m trên)
OACˆOAC^=ACNˆACN^(gt)
=>Tam giác COA=tam giác CNA(g.c.g)
=>AO=AN
Từ trên =>AN=AM
b)Ta Sẽ tính từ các kết luận trên được BN là trung trực của MO=>MN=NO
Tương tự trên cũng c/m được MC là trung trực của ON=>MO=MN
=>MN=MO=NO
=>Tam giác MON là tam giác đều.
a) Xét tam giác ABC có \(\widehat{B}+\widehat{C}=60^o\)nên \(\widehat{A}=120^o\)
Do AD là tia phân giác nên \(\widehat{A}_1=\widehat{A_2}=\widehat{A}_3=\widehat{A}_4=60^o\)
tam giác ABM = tam giác ABO ( g.c.g )
suy ra AM = AO
tam giác ACN = tam giác ACO ( g.c.g )
suy ra AN = AO
suy ra AM = AN
b) tam giác AOM = tam giác AON ( c.g.c ) \(\Rightarrow\)OM = ON ( 1 )
tam giác AOM = tam giác ANM ( c.g.c ) \(\Rightarrow\)OM = MN ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : OM = ON = MN
do đó tam giác MON đều
ĐỀ ĐÚNG K BẠN?